Bài 76 trang 114 SBT toán 9 tập 2

Đề bài

Hai ròng rọc có tâm \(O, O’\) và bán kính \(R = 4a,\) \(R’ = a.\) Hai tiếp tuyến chung \(MN\) và \(PQ\) cắt nhau tại \(A\) theo góc \(60^\circ.\) Tìm độ dài của dây cua- roa mắc qua hai ròng rọc.

Lời giải

+) Vì hai tiếp tuyến chung của đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) nên \(O, O’, A\) thẳng hàng.

\(\widehat {OAM} = \widehat {OAP} = \displaystyle{1 \over 2}\widehat {MAP}\) (tính chất hai tiếp tuyến cắt nhau)

\( \Rightarrow \widehat {OAM} = {30^0}\)  

+) Trong tam giác vuông \(OMA\) có \(\widehat {OMA} = {90^0}\)

\( \Rightarrow MA = OM.\cot \widehat {OAM}\)

\( = 4a\cot {30^0} = 4a\sqrt 3 \)

+) Trong tam giác vuông \(O’NA\) có\(\widehat {O'NA} = {90^0}\)

\( \Rightarrow NA = O'N\cot \widehat {O'AN} \)\(= a\cot {30^0} = a\sqrt 3 \)

\(MN = MA - NA \)\(= 4a\sqrt 3  - a\sqrt 3  = 3a\sqrt 3 \)

+) Trong tứ giác \(O’NAQ\) có \(\widehat N = \widehat Q = {90^0}\); \(\widehat A = {60^0}\)

Suy ra: \(\widehat {NO'Q} = {120^0}\)

Độ dài cung nhỏ \(\overparen{NQ}\) là: \({l_1} =\displaystyle {{\pi .a.120} \over {180}} = {{2\pi a} \over 3}\)

+) Trong tứ giác \(OMAP\) có \(\widehat M = \widehat P = {90^0}\); \(\widehat A = {60^0}\)

Suy ra: \(\widehat {MOP} = {120^0}\) nên số đo cung nhỏ \(\overparen{MP}\) bằng \({120^0}\)

  \(sđ \overparen{MnP}\) \( = {360^0} - {120^0} = {240^0}\)

Độ dài cung lớn \(\overparen{MnP}\) là \({l_2} = \displaystyle{{\pi .4a.240} \over {180}} = {{16\pi a} \over 3}\)

Chiều dài của dây cua – roa mắc qua hai ròng rọc là:

\(2MN + {l_1} + {l_2}\)\( = \displaystyle2.3a\sqrt 3  + {{2\pi a} \over 3} + {{16\pi a} \over 3}\)

\(=6a\sqrt 3  + 6\pi a = 6a\left( {\sqrt 3  + \pi } \right)\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”