Bài 78 trang 114 SBT toán 9 tập 2

Đề bài

Cho tam giác \(AHB\) có \(\widehat H = 90^\circ ,\widehat A = 30^\circ \) và \(BH = 4cm.\) Tia phân giác của góc \(B\) cắt \(AH\) tại \(O.\) Vẽ đường tròn \((O; OH)\) và đường tròn \((O; OA).\)

\(a)\) Chứng minh đường tròn \((O; OH)\) tiếp xúc với cạnh \(AB.\)

\(b)\) Tính diện tích hình vành khăn nằm giữa hai đường tròn trên.

Lời giải

\(a)\) Kẻ \(OK \bot AB\)

\(BO\) là đường phân giác của \(\widehat B\)

\( \Rightarrow OK = OH\) (tính chất đường phân giác)

Vậy đường tròn \((O; OH)\) tiếp xúc với \(AB\) tại \(K.\)

\(b)\) \(\Delta AHB\) có \(\widehat H = {90^0}\); \(\widehat A = {30^0}\)

Suy ra: \(\widehat B = {60^0} \Rightarrow \widehat {ABO} =\displaystyle {1 \over 2}\widehat B = {30^0}\)

Suy ra: \(∆OAB\) cân tại \(O\) nên \(OB = OA\)

Vậy \(B \in (O; OA)\)

\(∆BHO\) có \(\widehat H = {90^0}\); \(\widehat {OBH} = {30^0}\)

\(OH = BH.\tan {30^0} \)\(=\displaystyle  4.{{\sqrt 3 } \over 3} = {{4\sqrt 3 } \over 3}\;\;(cm)\)

\(OB = \displaystyle {{BH} \over {\cos \widehat {OBH}}} \)\(= \displaystyle {4 \over {\cos {{30}^0}}} = {4 \over \displaystyle {{{\sqrt 3 } \over 2}}} = {{8\sqrt 3 } \over 3}\) \((cm)\)

Diện tích đường tròn nhỏ: \(S_1=\displaystyle \pi {\left( {{{4\sqrt 3 } \over 3}} \right)^2} = {{16\pi } \over 3}\)  \((cm^2)\)

Diện tích đường tròn lớn: \({S_2} = \displaystyle \pi {\left( {{{8\sqrt 3 } \over 3}} \right)^2} = {{64\pi } \over 3}\) \((cm^2)\)

Diện tích hình vành khăn:

\(S={S_2} - {S_1} = \displaystyle {{64\pi } \over 3} - {{16\pi } \over 3} \)\(=\displaystyle  {{48\pi } \over 3} = 16\pi \) \((cm^2)\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”