Bài 8. Hàm số liên tục

Bài Tập và lời giải

Câu 46 trang 172 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng :

a. Các hàm số \(f\left( x \right) = {x^3} - x + 3\,\text {và }\,g\left( x \right) = {{{x^3} - 1} \over {{x^2} + 1}}\) liên tục tại mọi điểm \(x \in\mathbb R\).

b. Hàm số  \(f\left( x \right) = \left\{ {\matrix{{{{{x^2} - 3x + 2} \over {x - 2}}\,\text{ với}\,x \ne 2,} \cr {1\,\text{ với}\,x = 2} \cr} } \right.\)

liên tục tại điểm \(x = 2\)

c. Hàm số  \(f\left( x \right) = \left\{ {\matrix{{{{{x^3} - 1} \over {x - 1}}\,\text{ với}\,x \ne 1} \cr {2\,\text{ với}\,x = 1} \cr} } \right.\)

gián đoạn tại điểm \(x = 1\)

Xem lời giải

Câu 47 trang 172 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng :

a. Hàm số \(f\left( x \right) = {x^4} - {x^2} + 2\) liên tục trên \(\mathbb R\)

b. Hàm số \(f\left( x \right) = {1 \over {\sqrt {1 - {x^2}} }}\) liên tục trên khoảng (-1 ; 1) ;

c. Hàm số \(f\left( x \right) = \sqrt {8 - 2{x^2}} \) liên tục trên đoạn [-2 ; 2];

d. Hàm số \(f\left( x \right) = \sqrt {2x - 1} \) liên tục trên nửa khoảng  \(\left[ {{1 \over 2}; + \infty } \right)\)

Xem lời giải

Câu 48 trang 173 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng mỗi hàm số sau đây liên tục trên tập xác định của nó :

a.  \(f\left( x \right) = {{{x^2} + 3x + 4} \over {2x + 1}}\)

b.  \(f\left( x \right) = \sqrt {1 - x} + \sqrt {2 - x} \)

Xem lời giải

Câu 49 trang 173 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng phương trình :

\({x^2}\cos x + x\sin x + 1 = 0\)

Có ít nhất một nghiệm thuộc khoảng (0 ; π).

Xem lời giải

Câu 50 trang 175 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng :

a. Hàm số

\(f\left( x \right) = \left\{ {\matrix{{{{\left( {x + 1} \right)}^2}\,\text{ với }\,x \le 0} \cr {{x^2} + 2\,\text{ với }\,x > 0} \cr} } \right.\)

Gián đoạn tại điểm x = 0

b. Mỗi hàm số

\(g\left( x \right) = \sqrt {x - 3} \,\text{ và }\,h\left( x \right) = \left\{ {\matrix{{{1 \over {x - 2}}\,\text{ với }\,x \le 1} \cr { - {1 \over x}\,\text{ với }\,x > 1} \cr} } \right.\)

liên tục trên tập xác định của nó.

Xem lời giải

Câu 51 trang 175 SGK Đại số và Giải tích 11 Nâng cao
Giải thích vì sao :a. Hàm số \(f\left( x \right) = {x^2}\sin x - 2{\cos ^2}x + 3\) liên tục trên \(\mathbb R\).

b. Hàm số \(g\left( x \right) = {{{x^3} + x\cos x + \sin x} \over {2\sin x + 3}}\) liên tục trên \(\mathbb R\)

c. Hàm số \(h\left( x \right) = {{\left( {2x + 1} \right)\sin x - {{\cos }^3}x} \over {x\sin x}}\) liên tục tại mọi điểm \(x ≠ kπ, k \in\mathbb Z\).

Xem lời giải

Câu 52 trang 176 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng hàm số \(f\left( x \right) = {x^2} + x + 3 + {1 \over {x - 2}}\) liên tục trên tập xác định của nó.

Xem lời giải

Câu 53 trang 176 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng phương trình \({x^3} + x + 1 = 0\) có ít nhất một nghiệm âm lớn hơn -1.

Xem lời giải

Câu 54 trang 176 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số

\(f\left( x \right) = \left\{ {\matrix{{{1 \over x}\, \text{ với } \,x \ne 0} \cr { - 1\,  \text{ với } \,x = 0} \cr} } \right.\)

a. Chứng tỏ rằng \(f(-1)f(2) < 0\)

b. Chứng tỏ rằng phương trình \(f(x) = 0\) không có nghiệm thuộc khoảng (-1 ; 2)

c. Điều khẳng định trong b có mâu thuẫn với định lí về giá trị trung gian của hàm số liên tục hay không ?

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”