Ta có: \(\overparen{AB} = \overparen{BD} = \overparen{AC} \;\;(gt)\)
\( \Rightarrow \widehat {AOB} = \widehat {BOD} = \widehat {AOC} = {140^0}\)
Kẻ đường kính \(AA’, BB’\) ta có:
\(\widehat {AOB} + \widehat {AOB'} = {180^0}\) (hai góc kề bù)
\( \Rightarrow \widehat {AOB'} = {180^0} - \widehat {AOB} \)\(= {180^0} - {140^0} = {40^0}\)
Suy ra: \(\widehat {BOA'} = \widehat {AOB'} = {40^0}\) (hai góc đối đỉnh)
\(\widehat {B'OD} + \widehat {BOD} = {180^0}\) (hai góc kề bù)
\( \Rightarrow \widehat {B'OD} = {180^0} - \widehat {BOD}\)\( = {180^0} - {140^0} = {40^0}\)
\(\widehat {AOC} = \widehat {AOB'} + \widehat {B'OD} + \widehat {DOC}\)
\( \Rightarrow \widehat {DOC} = \widehat {AOC} - \widehat {AOB'} - \widehat {B'OD}\)\( = {140^0} - {40^0} - {40^0} = {60^0}\)
\(sđ \overparen{CD} (nhỏ) = \widehat {COD} = {60^0}\)
\(sđ \overparen{CD} (lớn) =360^o- sđ \overparen{CD} (nhỏ)\)\( = 360^o-60^o = 300^o\)