a) Ta có
\(\left\{ \matrix{
x = 2 \hfill \cr
2x - y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 2\ (d) \hfill \cr
y = 2x - 3\ (d') \hfill \cr} \right.\)
Dự đoán: Hệ có nghiệm duy nhất vì một đồ thị là đường thẳng \((d):x = 2\) song song với trục tung, còn một đồ thị là đường thẳng \((d'):y = 2x - 3\) cắt hai trục tọa độ.
+) Vẽ \((d)\): \(x = 2\) là đường thẳng đi qua điểm có tọa độ \((2;0)\) và song song với trục \(Oy\).
+) Vẽ \((d' )\): \(y =2x- 3\)
Cho \(x = 0 \Rightarrow y = -3\) ta được \(A(0; -3)\).
Cho \(y = 0 \Rightarrow x = \dfrac{3}{2}\) ta được \(B{\left(\dfrac{3 }{2};0 \right)}\).
Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(A,\ B\).
Ta thấy hai đường thẳng cắt nhau tại \(N(2; 1)\).
Thay \(x = 2, y = 1\) vào hệ phương trình
\(\left\{ \begin{array}{l}x = 2\\2x - y = 3\end{array} \right.\) ta được
\(\left\{ \begin{array}{l}2 = 2\\2.2 - 1 = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 = 2\\3 = 3\end{array} \right.\) (luôn đúng)
Vậy hệ phương trình có nghiệm \((2; 1)\).
\(b)\left\{ \matrix{
x + 3y = 2 \hfill \cr
2y = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = - \dfrac{1}{3}x + \dfrac{2}{3}\, (d)\hfill \cr
y = 2 \, (d') \hfill \cr} \right.\)
Hệ có nghiệm duy nhất vì một đồ thị là đường thẳng \((d):y = - \dfrac{1 }{3}x + \dfrac{2}{3}\) cắt hai trục tọa độ, còn một đồ thị là đường thẳng \((d'):y = 2\) song song với trục hoành.
+) Vẽ \(y=-\dfrac{1}{3}x+\dfrac{2}{3}\)
Cho \(x = 0 \Rightarrow y = \dfrac{2}{3}\) ta được \(A{\left(0;\dfrac{2}{3}\right)}\) .
Cho \(y = 0 \Rightarrow x = 2\) ta được \(B(2; 0)\).
Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(A,\ B\).
+) Vẽ \(y = 2\) là đường thẳng đi qua điểm có tọa độ \((0;2)\) trên trục tung và song song với trục hoành (\(Ox\))
Ta thấy hai đường thẳng cắt nhau tại \(M(-4; 2)\).
Thay \(x = -4, y = 2\) vào hệ phương trình
\(\left\{ \begin{array}{l}x+3y = 2\\2y = 4\end{array} \right.\) ta được
\(\left\{ \begin{array}{l} - 4 + 3.2 = 2\\2.2 = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 = 2\\4 = 4\end{array} \right.\) (luôn đúng)
Vậy hệ phương trình có nghiệm \((-4; 2)\).