Bài 8 trang 12 SGK Toán 9 tập 2

Cho các hệ phương trình sau:

\(a)\left\{ \matrix{
x = 2 \hfill \cr 
2x - y = 3 \hfill \cr} \right.\)

\(b)\left\{ \matrix{
x + 3y = 2 \hfill \cr 
2y = 4 \hfill \cr} \right.\)

Trước hết, hãy đoán nhận số nghiệm của mỗi hệ phương trình trên (giải thích rõ lí do). Sau đó, tìm tập nghiệm của các hệ đã cho bằng cách vẽ hình.

Lời giải

a) Ta có

\(\left\{ \matrix{
x = 2 \hfill \cr 
2x - y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 2\ (d) \hfill \cr 
y = 2x - 3\ (d') \hfill \cr} \right.\)

Dự đoán: Hệ có nghiệm duy nhất vì một đồ thị là đường thẳng \((d):x = 2\) song song với trục tung, còn một đồ thị là đường thẳng \((d'):y = 2x - 3\) cắt hai trục tọa độ.

+) Vẽ \((d)\): \(x = 2\) là đường thẳng đi qua điểm có tọa độ \((2;0)\) và song song với trục \(Oy\).

+) Vẽ \((d' )\): \(y =2x- 3\)

Cho \(x = 0 \Rightarrow y = -3\) ta được \(A(0; -3)\).

Cho \(y = 0 \Rightarrow x = \dfrac{3}{2}\) ta được \(B{\left(\dfrac{3 }{2};0 \right)}\).

Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(A,\ B\).

Ta thấy hai đường thẳng cắt nhau tại \(N(2; 1)\).

Thay \(x = 2, y = 1\) vào hệ phương trình 

\(\left\{ \begin{array}{l}x = 2\\2x - y = 3\end{array} \right.\) ta được 

\(\left\{ \begin{array}{l}2 = 2\\2.2 - 1 = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 = 2\\3 = 3\end{array} \right.\)  (luôn đúng) 

Vậy hệ phương trình có nghiệm \((2; 1)\).

\(b)\left\{ \matrix{
x + 3y = 2 \hfill \cr
2y = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = - \dfrac{1}{3}x + \dfrac{2}{3}\, (d)\hfill \cr
y = 2 \, (d') \hfill \cr}  \right.\)

Hệ có nghiệm duy nhất vì một đồ thị là đường thẳng \((d):y =  - \dfrac{1 }{3}x + \dfrac{2}{3}\) cắt hai trục tọa độ, còn một đồ thị là đường thẳng \((d'):y = 2\) song song với trục hoành.

+) Vẽ \(y=-\dfrac{1}{3}x+\dfrac{2}{3}\)

Cho \(x = 0 \Rightarrow y = \dfrac{2}{3}\) ta được \(A{\left(0;\dfrac{2}{3}\right)}\) .

Cho \(y = 0 \Rightarrow x = 2\) ta được \(B(2; 0)\).

Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(A,\ B\).

+) Vẽ  \(y = 2\) là đường thẳng đi qua điểm có tọa độ \((0;2)\) trên trục tung và song song với trục hoành (\(Ox\))

Ta thấy hai đường thẳng cắt nhau tại \(M(-4; 2)\).

Thay \(x = -4, y = 2\) vào hệ phương trình 

\(\left\{ \begin{array}{l}x+3y = 2\\2y = 4\end{array} \right.\) ta được

\(\left\{ \begin{array}{l} - 4 + 3.2 = 2\\2.2 = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 = 2\\4 = 4\end{array} \right.\)  (luôn đúng)

Vậy hệ phương trình có nghiệm \((-4; 2)\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”