Bài 8 trang 138 SBT toán 7 tập 1

Đề bài

Cho tam giác \(ABC\) có \(\widehat A = 100^\circ ,\widehat B - \widehat C = 20^\circ \). Tính \(\widehat B\) và \(\widehat C\).

Lời giải

Áp dụng định lí tổng ba góc của một tam giác vào \(∆ABC\), ta có:

\(\widehat A + \widehat B + \widehat C = 180^\circ \)

\( \Rightarrow \widehat B + \widehat C = {180^o} - \widehat A\)

\( \Rightarrow \widehat B + \widehat C = 180^\circ  - 100^\circ   \)   

\( \Rightarrow \widehat B + \widehat C   = 80^\circ \)               (1)

\(\widehat B - \widehat C = 20^\circ \left( {gt} \right)\)             (2)

Cộng (1) và (2) theo vế với vế ta được:

\(2\widehat B = 100^\circ  \Rightarrow \widehat B =100^\circ :2= 50^\circ \)

Vậy \(\widehat C = 80^\circ  - 50^\circ  = 30^\circ \).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”