Bài 8 trang 26 SGK Hình học 12

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(SA\) vuông góc với đáy và \(AB = a, AD = b, SA =c\). Lấy các điểm \(B', D'\) theo thứ tự thuộc \(SB, SD\) sao cho \(AB'\) vuông góc với \(SB, AD'\) vuông góc với \(SD\). Mặt phẳng \((AB'D')\) cắt \(SC\) tại \(C'\). Tính thể tích khối chóp \(S.AB'C'D'\).

Lời giải

Ta có \(BC \bot AB,BC \bot SA \Rightarrow BC \bot \left( {SAB} \right)\) \(\Rightarrow BC\bot AB'\)

Theo giả thiết \(SB \bot AB'\) \(\Rightarrow AB' \bot (SBC) \Rightarrow AB' \bot SC\)         (1)

Chứng minh tương tự ta có: \(AD' \bot SC\)                (2)

Từ (1) và (2) suy ra \(SC \bot (AB'C'D')\) hay \(SC\) là đường cao của hình chóp \(S.AB'C'D'\).

Từ \(AB' \bot (SBC)\) \( \Rightarrow AB' \bot B'C'\)

Tương tự ta có: \(AD' \bot D'C'\)

\( \Rightarrow {S_{AB'C'D'}} = {S_{AB'C'}} + {S_{AD'C'}} \)

\(= \dfrac{1}{2}AB'.B'C' + \dfrac{1}{2}AD'.D'C'\) \( = \dfrac{1}{2}\left( {AB'.B'C' + AD'.D'C'} \right)\)

Từ các kết quả trên, ta được:

\(\displaystyle{V_{AB'C'D'}} = {1 \over 3}.SC'.{1 \over 2}(AB'.B'C' + AD'.D'C')\)

\(\displaystyle ={1 \over 6}SC'.(AB'.B'C' + AD'.D'C')\)     (*)

Ta tính các yếu tố trên.

Tam giác vuông \(SAB\) có \(AB'\) là đường cao, nên ta có:

\(\displaystyle{1 \over {AB{'^2}}} = {1 \over {{a^2}}} + {1 \over {{c^2}}} \Rightarrow AB{'^2} = {{{a^2}{c^2}} \over {{a^2} + {c^2}}}\) \( \displaystyle \Rightarrow AB' = {{ac} \over {\sqrt {{a^2} + {c^2}} }}\)

Tương tự, ta có:

\(\displaystyle AD{'^2} = {{{b^2}{c^2}} \over {{b^2} + {c^2}}} \Rightarrow AD' = {{bc} \over {\sqrt {{b^2} + {c^2}} }}\)

Ta lại có: \(SC^2 = AC^2 + AS^2 = a^2 + b^2 + c^2 \Rightarrow SC = \sqrt {{a^2} + {b^2} + {c^2}} \)

Trong tam giác vuông \(SAC, AC'\) là đường cao

\(\Rightarrow SC'.SC = SA^2\) \( \displaystyle \Rightarrow SC' = {{S{A^2}} \over {SC}} = {{{c^2}} \over {\sqrt {{a^2} + {b^2} + {c^2}} }}\)

\(∆SBC\) đồng dạng  \(∆SC'B'\) (g.g)\( \displaystyle \Rightarrow {{B'C'} \over {BC}} = {{SC'} \over {SB}}\)

\(\displaystyle \Rightarrow B'C' = {{SC'.BC} \over {SB}} = {{b{c^2}} \over {\sqrt {{a^2} + {c^2}} \sqrt {{a^2} + {b^2} + {c^2}} }}\)

Tương tự ta có:  \(\displaystyle D'C' = {{{c^2}a} \over {\sqrt {{b^2} + {c^2}} \sqrt {{a^2} + {b^2} + {c^2}} }}\)

Thay các kết quả này vào (*) ta được:

\(\displaystyle V = {1 \over 6}.{{ab{c^5}({a^2} + {b^2} + 2{c^2})} \over {({a^2} + {c^2})({b^2} + {c^2})({a^2} + {b^2} + {c^2})}}\)


Bài Tập và lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 3 - Hình học 7

Đề bài

Bài 1: Cho tam giác ABC biết BC = 1cm; AB = 6cm. Tính độ dài cạnh AC biết độ dài này là một số nguyên.

Bài 2: Chứng minh rằng “trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy”.

Bài 3: Cho tam giác ABC có AB = 6cm; AC = 12cm; BC = 15cm.

a) Chứng minh rằng \(\Delta ABC\) vuông.

b) Vẽ trung tuyến AM. Từ M vẽ MH vuông góc với AC. Trên tia đối của tia MH lấy điểm K sao cho MK = MH. Chứng minh \(\Delta MHC = \Delta MKB.\)

c) Gọi G là giao điểm của BH và AM. Gọi I là trung điểm của AB. Chứng minh rằng I, G, C thẳng hàng.

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 3 - Hình học 7

Đề bài

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH, các đường phân giác của góc \(\widehat {BAH}\) và \(\widehat {CAH}\) cắt BC ở D và E.

a) Chứng minh \(\widehat {HAB} = \widehat {C.}\)

b) Chứng minh \(\Delta ABE\) cân.

Bài 2: Cho tam giác ABC có \(AB < AC\), phân giác AD. Trên tia AC lấy điểm E sao cho \(A{\rm{E}} = AB.\)

a) Chứng minh: \(B{\rm{D}} = E{\rm{D}}.\)

b) AB cắt ED ở K. Chứng minh rằng: \(\Delta DBK = \Delta DEC.\)

c) Chứng minh: \(\Delta AKC\) là tam giác đều.

d) Chứng minh: \(A{\rm{D}} \bot KC.\)    

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 3 - Hình học 7

Đề bài

Bài 1: Cho tam giác ABC nhọn. Đường cao AH, vẽ HP vuông góc với AB (P thuộc AB); trên tia đối của tia PH lấy \(PM = PH\) , vẽ HQ vuông góc với AC (Q thuộc AC). Trên tia đối của tia QH lấy \(QN = QH\). Nối M với N đường thẳng MN cắt AB, AC theo thứ tự tại Ivà K. Chứng minh:
a) \(\Delta AMN\) cân.
b) Tia HA là tia phân giác của góc \(\widehat {IHK}\). 

Bài 2: Cho tam giác ABC vuông ở A có \(\widehat C = {30^0}\), đường cao AH. Trên đoạn HC lấy điểm D sao cho \(H{\rm{D}} = HB\). Từ C kẻ CE vuông góc với AD. Chứng minh:

a) \(\Delta AB{\rm{D}}\) là tam giác đều;

b) \(AH = CE;\)

c) EH // AC.  

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 3 - Hình học 7

Đề bài

Bài 1: Tìm chu vi của một tam giác cân biết hai cạnh tron ba cạnh của tam giác có độ dài là 4cm; 9cm.

Bài 2: Cho tam giác ABC (\(AB > AC\)). Gọi AD là phân giác của góc A. Trên tia AB lấy điểm M sao cho AM = AC. Chứng minh:

a) \(\Delta A{\rm{D}}M = \Delta ADC.\)

b) \(\widehat {A{\rm{D}}B} > \widehat {A{\rm{D}}C}.\)

Bài 3: Cho tam giác ABC vuông tại B, vẽ phân giác AD (D thuộc BC). Từ D vẽ  DE vuông góc với AC (E thuộc AC).

a) Chứng minh rằng: BD = DE.

b) Chứng minh: \(C{\rm{D}} > B{\rm{D}}.\)

e) ED cắt AB tại F. Chứng minh \(\Delta A{\rm{D}}F = \Delta A{\rm{D}}C.\)

d) Chứng minh \(BA + BC > DE + AC.\)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương 3 - Hình học 7

Đề bài

Bài 1: Cho tam giác ABC có \(\widehat B = {70^0},\widehat C = {60^0},\) vẽ đường cao AH. Hãy so sánh độ dài các đoạn HB và HC.

Bài 2: Cho tam giác ABC nhọn,  hai trung tuyến BD và CE cắt nhau tại G. Gọi H, K lần lượt là trung điểm của GB và GC. Chứng minh DE // HK.

Bài 3: Cho tam giác ABC  cân tại A (\(AB > AC\)), hai đường cao BD và CE cắt nhau tại H. Chứng minh:

a) \(\Delta AB{\rm{D}}\) và \(\Delta AC{\rm{E}}\) bằng nhau;

b) AH là đường trung trực của đoạn BC;

c) DE và BC song song với nhau;

d) \(AH > CH.\)  

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 6 - Chương 3 - Hình học 7

Đề bài

Bài 1: Cho tam giác ABC có \(\widehat A = {55^0},\widehat B = {65^0}.\) Hãy so sánh các cạnh của tam giác ABC.

Bài 2: Cho tam giác ADE vuông tại A có AD = 8cm, AE = 15 cm.

a) Tính độ dài đoạn DE.

b) Gọi N là trung điểm của AE. Trên tia đối của tia ND lấy điểm K sao cho \(N{\rm{D}} = NK.\) Chứng minh: \(\Delta AN{\rm{D}} = \Delta ENK\); so sánh độ dài đoạn thẳng AD và EK.

e) Chứng minh AK và DE song song với nhau.

d) Chứng minh: \(A{\rm{D}} + DE > 2{\rm{D}}N.\) 

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 7 - Chương 3 - Hình học 7

Đề bài

Bài 1: Cho tam giác ABC cân tại B có góc B tù.

a) So sánh độ dài hai cạnh AB và AC.

b) Biết số đo góc A bằng \({25^0}\). Tính số đo góc B và góc C.

Bài 2: Cho tam giác DEF có \(\widehat E = {90^0},\) tia phân giác DH. Qua H kẻ HI vuông góc với DF (I thuộc DF). Chứng minh:

a) \(\Delta DHE = \Delta DHI\).

b) DH là đường trung trực của đoạn  EI.

c) \(EH < HF.\) 

Xem lời giải