Bài 8 trang 59 SGK Hình học 10

Cho tam giác \(ABC\) biết cạnh \(a = 137,5cm; \widehat{B} = 83^0, \, \widehat{C} = 57^0.\) Tính góc \(A,\) cạnh \(b\) và \(c\) của tam giác.

Lời giải

Ta có: \(\widehat{A} = 180^0- (\widehat{B}+ \widehat{C}) = 40^0\)

Áp dụng định lí \(\sin\) : \(\frac{a}{\sin A} = \frac{b}{\sin B} =  \frac{c}{\sin C}\), ta có:

\(b =\frac{a \sin B}{\sin A}= \frac{137,5.\sin83^{0}}{\sin40^0} ≈ 212,31cm.\)   

\(c  =\frac{a \sin C}{\sin A}= \frac{137,5.\sin57^{0}}{\sin40^0} ≈ 179,40cm.\)