Ta có : \(\sqrt {{1^3} + {2^3}} = \sqrt {1 + 8} = \sqrt 9 = 3\)
Và \(1 + 2 = 3\)
Vậy \(\sqrt {{1^3} + {2^3}} = 1 + 2\)
Ta có :
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3}} = \sqrt {1 + 8 + 27} \cr
& = \sqrt {36} = 6 \cr} \)
Vậy \(\sqrt {{1^3} + {2^3} + {3^3}} = 1 + 2 + 3\)
Ta có :
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr
& = \sqrt {1 + 8 + 27 + 64} \cr
& = \sqrt {100} = 10 \cr} \)
Và \(1 + 2 + 3 + 4 = 10\)
Vậy
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr
& = 1 + 2 + 3 + 4 \cr} \)
Một số đẳng thức tương tự:
\(\sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3}} \)\(= 1 + 2 + 3 + 4 + 5 \)
\(\sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3} +{6^3}}\)
\(= 1 + 2 + 3 + 4 + 5 +6 \).