Đề bài
Vẽ tam giác \(ABC\) biết \(\widehat B = 90^\circ ,BC = 2cm,\widehat C = 60^\circ \). Sau đó đo \(AC\) để kiểm tra rằng \(AC = 4cm.\)
Đề bài
Tìm các tam giác bằng nhau ở hình 55 (không xét tam giác mà các cạnh chưa được kẻ)
Đề bài
Cho tam giác \(ADE\) có \(\widehat D = \widehat E\). Tia phân giác của góc \(D\) cắt \(AE\) ở điểm \(M.\) Tia phân giác của góc \(E\) cắt \(AD\) ở điểm \(N\). So sánh các độ dài \(DN\) và \(EM.\)
Đề bài
Cho hình 56, trong đó \(AB // HK, AH // BK.\) Chứng minh rằng \(AB = HK, AH = BK.\)
Đề bài
Cho tam giác \(ABC.\) Các tia phân giác của các góc \(B\) và \( C\) cắt nhau ở \(O.\) Kẻ \({\rm{OD}} \bot\, AC\), kẻ \({\rm{O}}E \bot \,AB\). Chứng minh rằng \(OD = OE.\)
Đề bài
Cho tam giác \(ABC\) có \(AB = AC.\) Lấy điểm \(D\) trên cạnh \(AB\), điểm \(E\) trên cạnh \(AC\) sao cho \(AD = AE.\)
a) Chứng minh rằng \( BE = CD.\)
b) Gọi \(O\) là giao điểm của \(BE\) và \(CD.\) Chứng minh rằng \(∆BOD = ∆COE\).
Đề bài
Cho tam giác \(ABC\) có \(\widehat B = \widehat C\). Tia phân giác góc \(A\) cắt \(BC\) tại \(D.\) Chứng minh rằng \(DB = DC, AB = AC.\)
Đề bài
Cho hình 57, chứng minh rằng \(O\) là trung điểm của mỗi đoạn thẳng \(AD, BC.\)
Đề bài
Cho hình 58 trong đó \(DE // AB, DF // AC, EF // BC.\) Tính chu vi tam giác \(DEF.\)
Đề bài
Cho đoạn thẳng \(AB.\) Qua \(A\) vẽ đường thẳng \(m\) vuông góc với \(AB.\) Qua \(B\) vẽ đường thẳng \(n\) vuông góc với \(AB.\) Qua trung điểm \(O\) của \(AB\) vẽ một đường thẳng cắt \(m\) ở \(C\) và cắt \(n\) ở \(D.\) So sánh các độ dài \(OC\) và \(OD.\)
Đề bài
Cho tam giác \(ABC\) có \(AB = 2,5cm, AC = 3cm, \) \(BC = 3,5cm.\) Qua \(A\) vẽ đường thẳng song song với \(BC\), qua \(C\) vẽ đường thẳng song song với \( AB\), chúng cắt nhau ở \(D.\) Tính chu vi tam giác \(ACD.\)
Đề bài
Cho tam giác \(ABC\) vuông tại \(A.\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D.\) Kẻ \(DE\) vuông góc với \(BC.\) Chứng minh rằng \(AB = BE.\)
Đề bài
Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = AC.\) Qua \(A\) kẻ đường thẳng \(xy\) (\(B, C\) nằm cùng phía đối với \(xy\)). Kẻ \(BD\) và \(CE\) vuông góc với \(xy\). Chứng minh rằng:
a) \(∆BAD = ∆ACE\).
b) \(DE = BD + CE\).
Đề bài
Cho tam giác \(ABC.\) Vẽ ở phía ngoài tam giác \(ABC\) các tam giác vuông tại \(A\) là \(ABD, ACE\) có \(AB = AD, AC = AE.\) Kẻ \(AH\) vuông góc với \(BC, DM \) vuông góc với \(AH, EN\) vuông góc với \(AH.\) Chứng minh rằng:
a) \(DM = AH.\)
b) \(MN\) đi qua trung điểm của \(DE\).
Đề bài
Cho tam giác \(ABC, D\) là trung điểm của \(AB.\) Đường thẳng qua \(D\) và song song với \(BC\) cắt \(AC\) ở \(E\), đường thẳng qua \(E\) và song song với \(AB\) cắt \(BC\) ở \(F.\) Chứng minh rằng:
a) \(AD = EF\).
b) \(∆ADE =∆EFC\).
c) \(AE = EC\).
Đề bài
Cho tam giác \(ABC, D\) là trung điểm của \(AB,\) \(E\) là trung điểm của \(AC.\) Vẽ điểm \(F\) sao cho \(E\) là trung điểm của \(DF.\) Chứng minh rằng:
a) \(DB = CF\).
b) \(∆BDC = ∆FCD\).
c) \(DE// BC\) và \(\displaystyle DE = {1 \over 2}BC\)
Đề bài
Cho tam giác \(ABC.\) Trên cạnh \(AB\) lấy các điểm \(D\) và \(E\) sao cho \(AD = BE.\) Qua \(D\) và \(E\), vẽ các đường thẳng song song với \(BC,\) chúng cắt \(AC\) theo thứ tự ở \(M\) và \(N.\) Chứng minh rằng \(DM + EN = BC.\)
Hướng dẫn: Qua \(N,\) kẻ đường thẳng song song với \(AB.\)
Đề bài
Cho tam giác \(ABC\) có \(\widehat A = 60^\circ \). Các tia phân giác của các góc \(B, C\) cắt nhau ở \(I\) và cắt \(AC, AB\) theo thứ tự ở \(D, E.\) Chứng minh rằng \(ID = IE.\)
Hướng dẫn: Kẻ tia phân giác góc \(BIC\).
Bài 5.1
Cho tam giác \(ABC\) và tam giác có ba đỉnh là \(D,E,F\). Biết \(AB= DF\) và \(\widehat B = \widehat D\)
Trong các khẳng định sau,khẳng định nào đúng, khẳng định nào sai ?
a) Nếu \(\widehat A = \widehat F\) thì hai tam giác đó bằng nhau.
b) Nếu \(\widehat A = \widehat E\) thì hai tam giác đó bằng nhau.
c) Nếu \(\widehat C = \widehat E\) thì hai tam giác đó bằng nhau.