Bài 83 trang 99 SGK Toán 9 tập 2

a) Vẽ hình 62 (tạo bởi các cung tròn) với \(HI = 10cm\) và \(HO = 2cm\). Nêu cách vẽ.

b) Tính diện tích hình \(HOABINH\) (miền gạch sọc)

c) Chứng tỏ rằng hình tròn đường kính \(NA\) có cùng diện tích với hình \(HOABINH\) đó.

Lời giải

 

a) + Vẽ đoạn thẳng \(HI = 10cm\), trên đoạn \(HI\) lấy hai điểm \(O\) và \(B\) sao cho \(HO = BI = 2cm\). Lấy \(D\) là trung điểm đoạn thẳng \(HI.\)

+ Trên cùng một nửa mặt phẳng bờ \(HI\), vẽ các nửa đường tròn đường kính \(HI;HO;BI\)

+ Trên nửa mặt phẳng còn lại ta vẽ nửa đường tròn đường kính \(OB.\)

+ Vẽ đường trung trực của đoạn \(HI\), đường thẳng này cắt nửa đường tròn đường kính \(HI\) tại \(N\) và cắt nửa đường tròn đường kính \(OB\) tại \(A.\)

+ Bỏ đi hai nửa hình tròn đường kính \(HO\) và \(BI\), gạch chéo phần hình còn lại vừa vẽ ta được hình theo yêu cầu.

b) Theo cách dựng ta có: 

Nửa hình tròn đường kính \(HO\) và \(BI\) đều có bán kính \(r = 2:2 = 1cm\). Hai nửa hình tròn này có diện tích bằng nhau và bằng \({S_3} = \dfrac{1}{2}\pi .{r^2} = \dfrac{1}{2}\pi \,\left( {c{m^2}} \right)\)  

Nửa hình tròn đường kính \(HI\) có bán kính \(R = 10:2 = 5cm\) và có tâm \(D.\) Nửa hình tròn này có diện tích \({S_1} = \dfrac{1}{2}\pi {R^2} = \dfrac{1}{2}\pi {.5^2} = 12,5\pi \,\left( {c{m^2}} \right)\)

Nửa hình tròn đường kính \(OB\) có tâm \(D\) và có bán kính \({r_2} = OB:2 = \left( {HI - HO - BI} \right):2 = \left( {10 - 2 - 2} \right):2 = 3cm\)

Nửa hình tròn này có diện tích bằng \({S_2} = \dfrac{1}{2}\pi r_2^2 = \dfrac{1}{2}\pi {.3^2} = 4,5\pi \left( {c{m^2}} \right)\)

Phần hình bị gạch chéo tạo bởi các nửa đường tròn bán kính \(5cm;3cm\) và \(1cm\).

Diện tích phần bị gạch chéo là \(S = {S_1} - 2{S_3} + {S_2} = 12,5\pi  - 2.\dfrac{1}{2}\pi  + 4,5\pi  = 16\pi \left( {c{m^2}} \right)\)

c) Ta có \(DN = R = 5cm;\,DA = {r_2} = 3cm \Rightarrow NA = 5 + 3 = 8cm\)

Đường tròn đường kính \(NA\) có bán kính là \(R' = 8:2 = 4cm\)

Diện tích hình tròn đường kính \(NA\) là \(S' = \pi {R'^2} = \pi {.4^2} = 16\pi \left( {c{m^2}} \right)\)

Vậy \(S = S'\) (đpcm).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”