a) + Vẽ đoạn thẳng \(HI = 10cm\), trên đoạn \(HI\) lấy hai điểm \(O\) và \(B\) sao cho \(HO = BI = 2cm\). Lấy \(D\) là trung điểm đoạn thẳng \(HI.\)
+ Trên cùng một nửa mặt phẳng bờ \(HI\), vẽ các nửa đường tròn đường kính \(HI;HO;BI\)
+ Trên nửa mặt phẳng còn lại ta vẽ nửa đường tròn đường kính \(OB.\)
+ Vẽ đường trung trực của đoạn \(HI\), đường thẳng này cắt nửa đường tròn đường kính \(HI\) tại \(N\) và cắt nửa đường tròn đường kính \(OB\) tại \(A.\)
+ Bỏ đi hai nửa hình tròn đường kính \(HO\) và \(BI\), gạch chéo phần hình còn lại vừa vẽ ta được hình theo yêu cầu.
b) Theo cách dựng ta có:
Nửa hình tròn đường kính \(HO\) và \(BI\) đều có bán kính \(r = 2:2 = 1cm\). Hai nửa hình tròn này có diện tích bằng nhau và bằng \({S_3} = \dfrac{1}{2}\pi .{r^2} = \dfrac{1}{2}\pi \,\left( {c{m^2}} \right)\)
Nửa hình tròn đường kính \(HI\) có bán kính \(R = 10:2 = 5cm\) và có tâm \(D.\) Nửa hình tròn này có diện tích \({S_1} = \dfrac{1}{2}\pi {R^2} = \dfrac{1}{2}\pi {.5^2} = 12,5\pi \,\left( {c{m^2}} \right)\)
Nửa hình tròn đường kính \(OB\) có tâm \(D\) và có bán kính \({r_2} = OB:2 = \left( {HI - HO - BI} \right):2 = \left( {10 - 2 - 2} \right):2 = 3cm\)
Nửa hình tròn này có diện tích bằng \({S_2} = \dfrac{1}{2}\pi r_2^2 = \dfrac{1}{2}\pi {.3^2} = 4,5\pi \left( {c{m^2}} \right)\)
Phần hình bị gạch chéo tạo bởi các nửa đường tròn bán kính \(5cm;3cm\) và \(1cm\).
Diện tích phần bị gạch chéo là \(S = {S_1} - 2{S_3} + {S_2} = 12,5\pi - 2.\dfrac{1}{2}\pi + 4,5\pi = 16\pi \left( {c{m^2}} \right)\)
c) Ta có \(DN = R = 5cm;\,DA = {r_2} = 3cm \Rightarrow NA = 5 + 3 = 8cm\)
Đường tròn đường kính \(NA\) có bán kính là \(R' = 8:2 = 4cm\)
Diện tích hình tròn đường kính \(NA\) là \(S' = \pi {R'^2} = \pi {.4^2} = 16\pi \left( {c{m^2}} \right)\)
Vậy \(S = S'\) (đpcm).