Bài 84 trang 109 SGK Toán 8 tập 1

 Cho tam giác \(ABC\), \(D\) là điểm nằm giữa \(B\) và \(C.\) Qua \(D\) kẻ các đường thẳng song song với \(AB\) và \(AC\), chúng cắt các cạnh \(AC\) và \(AB\) theo thứ tự ở \(E\) và \(F.\)

a) Tứ giác \(AEDF\) là hình gi ? Vì sao ?

b) Điểm \(D\) ở vị trí nào trên cạnh \(BC\) thì tứ giác \(AEDF\) là hình thoi ?

c) Nếu tam giác \(ABC\) vuông tại \(A\) thì tứ giác \(AEDF\) là hình gì ? Điểm \(D\) ở vị trí nào trên cạnh \(BC\) thì tứ giác \(AEDF\) là hình vuông ?

Lời giải

a) Xét tứ giác \(AEDF\) có: 

 \(DE // AF, DF // AE\) (gt)

\( \Rightarrow \)  Tứ giác \(AEDF\) là hình bình hành (dấu hiệu nhận biết hình bình hành).

b) \(AEDF\) là hình thoi thì \(AD\) là tia phân giác của \(\widehat {CAB}\).

Do đó \(D\) là giao điểm của tia phân giác của \(\widehat {CAB}\) với \(BC\) thì hình bình hành \(AEDF\) là hình thoi (dấu hiệu nhận biết hình thoi).

c) Nếu  \(∆ABC\) vuông tại \(A\) thì hình bình hành \(AEDF\) có một góc vuông do đó hình bình hành \(AEDF\) là hình chữ nhật ( theo dấu hiệu nhận biết hình chữ nhật) 

Nếu \(∆ABC\)  vuông tại \(A\) và \(D\) là giao điểm của tia phân giác của \(\widehat {CAB}\) với cạnh \(BC\) thì \(AEDF\) là hình vuông (vì khi đó \(AEDF\) là hình thoi có một góc vuông).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”