Gọi \(O \) là giao điểm của hai đường chéo \(AC\) và \(BD.\)
Kẻ \(OO’ ⊥ xy\)
Ta có: \(BB’ ⊥ xy \;\;(gt)\)
\(DD’ ⊥ xy\;\; (gt)\)
Suy ra: \(BB’ // OO’ // DD’\)
Tứ giác \(BB’D’D\) là hình thang
\(OB = OD\) (tính chất hình bình hành)
nên \(O’B’ = O’D’\) do đó \(OO’\) là đường trung bình của hình thang \(BB’D’D\)
\(⇒ OO’= \displaystyle {{BB' + {\rm{DD}}'} \over 2}\) (tính chất đường trung bình hình thang) \((1)\)
\(AA’ ⊥ xy \;\;(gt)\)
\(OO’ ⊥ xy\) (theo cách vẽ)
Suy ra: \(AA’ // OO’\)
Trong \(∆ ACA’\) ta có: \(OA = OC\) ( tính chất hình bình hành)
\(OO’ // AA’\) nên \(OO’\) là đường trung bình của \(∆ ACA’\)
\(⇒ OO’ = \displaystyle {1 \over 2}AA’\) (tính chất đường trung bình của tam giác)
\(⇒ AA’ = 2OO’ \;\;(2)\)
Từ \((1)\) và \((2)\) suy ra: \(AA’ = BB’ + DD’.\)