Bài 86 trang 90 SBT toán 8 tập 1

Đề bài

Cho hình bình hành \(ABCD\) và đường thẳng \(xy\) không có điểm chung với hình bình hành. Gọi  \(AA’, BB’, CC’,\) \(DD’\) là đường vuông góc kẻ từ \(A, B, C, D\) đến đường thẳng \(xy.\) Tìm mối liên hệ độ dài giữa \(AA’, BB’, CC’, DD’.\)

Lời giải

 

Gọi \(O\) là giao điểm của \(AC\) và \(BD\)

Kẻ \(OO’ ⊥ xy\)

      \(AA’ ⊥ xy\;\; (gt)\)

     \( CC’ ⊥ xy (gt)     \)

Suy ra: \(AA’// OO’ // CC’\)

Tứ giác \(ACC'A’\) là hình thang có: \(OA = OC\) (chứng minh trên)

\(OO’ // AA’\) nên \(OO’\) là đường trung bình của hình thang \(ACC’A’.\)

\(⇒ OO’  = \displaystyle {{{\rm{AA'}} + CC'} \over 2}\) (tính chất đường trung bình của hình thang) \((1)\)

\(BB’ ⊥ xy \;\;(gt)\)

\(DD’ ⊥ xy\;\; (gt)\)

\(OO’ ⊥ xy\) (theo cách vẽ)

Suy ra: \(BB’ // OO’ // DD’\)

Tứ giác \(BDD’B’\) là hình thang có: \( OB = OD\) (chứng minh trên)

\(OO’ // BB’ \) nên \(OO’\) là đường trung bình của hình thang BDD’B’

\(⇒ OO’ = \displaystyle  {{BB' + {\rm{DD}}'} \over 2}\) (tính chất đường trung bình của hình thang) \((2)\)

Từ \((1)\) và \((2)\) suy ra: \(AA’ + CC’ = BB’ + DD’\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”