Đề bài
Tìm \(x\), biết:
a) \(\root 3 \of x = - 1,5\)
b) \(\root 3 \of {x - 5} = 0,9\)
Đề bài
Chứng minh các bất đẳng thức sau:
a) \(\root 3 \of {{a^3}b} = a\root 3 \of b \)
b) \(\sqrt[3]{{\dfrac{a}{{{b^3}}}}} = \dfrac{1}{b}\sqrt[3]{{ab}}\) (\(b \ne 0)\))
Đề bài
Tìm giá trị gần đúng của căn bậc ba mỗi số sau bằng bảng lập phương và kiểm tra bằng máy tính bỏ túi (làm tròn đến chữ số thập phân thứ ba):
a) \(12\)
b) \(25,3\)
c) \(-37,91\)
d) \(-0,08\)
Đề bài
So sánh (không dùng bảng tính hay máy tính bỏ túi):
a) \(2\root 3 \of 3 \) và \(\root 3 \of {23} \)
b) \(33\) và \(3\root 3 \of {1333} \)
Đề bài
Tìm tập hợp các giá trị \(x\) thỏa mãn điều kiện sau và biểu diễn tập hợp đó trên trục số:
a) \(\root 3 \of x \ge 2\);
b) \(\root 3 \of x \le - 1,5\).
Đề bài
Chứng minh:
\({x^3} + {y^3} + {z^3} - 3xyz\)\( = \dfrac{1}{2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right]\)
Từ đó chứng tỏ:
a) Với ba số \(x, y, z\) không âm thì \(\dfrac{{{x^3} + {y^3} + {z^3}}}{3}\ge xyz\)
b) Với ba số \(a, b, c\) không âm thì \(\dfrac{{a + b + c}}{3} \ge \root 3 \of {abc} \)
(Bất đẳng thức Cô-si cho ba số không âm).
Dấu đẳng thức xảy ra khi ba số \(a, b, c\) bằng nhau.
Đề bài
Áp dụng bất đẳng thức Cô-si cho ba số không âm, chứng minh:
a) Trong các hình hộp chữ nhật có cùng tổng ba kích thước thì hình lập phương có thể tích lớn nhất.
b) Trong các hình hộp chữ nhật có cùng thể tích thì hình lập phương có tổng ba kích thước bé nhất.