Chứng minh rằng hình chữ nhật \(ABCD\) trên hình \(84\) cũng là một hình bình hành, một hình thang cân.
Với một chiếc compa, ta sẽ kiểm tra được hai đoạn thẳng bằng nhau hay không bằng nhau. Bằng compa, để kiểm tra tứ giác \(ABCD\) có là hình chữ nhật hay không, ta làm thế nào?
Cho hình \(86\):
a) Tứ giác \(ABDC\) là hình gì? Vì sao?
b) So sánh các độ dài \(AM\) và \(BC.\)
c) Tam giác vuông \(ABC\) có \(AM\) là đường trung tuyến ứng với cạnh huyền. Hãy phát biểu tính chất tìm được ở câu b) dưới dạng một định lí.
Cho hình \(87\):
a) Tứ giác \(ABDC\) là hình gì ? Vì sao ?
b) Tam giác \(ABC\) là tam giác gì ?
c) Tam giác \(ABC\) có đường trung tuyến \(AM\) bằng nửa cạnh \(BC\). Hãy phát biểu tính chất tìm được ở câu b) dưới dạng một định lí.
Điền vào chỗ trống, biết rằng \(a, b\) là độ dài các cạnh, \(d\) là độ dài đường chéo của một hình chữ nhật.
Chứng minh rằng:a) Giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình chữ nhật đó.
b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó.
Tính độ dài đường trung tuyến ứng với cạnh huyền của một tam giác vuông có các cạnh góc vuông bằng \(7cm\) và \(24cm\).
Cho tam giác \(ABC\), đường cao \(AH\). Gọi \(I\) là trung điểm của \(AC, E\) là điểm đối xứng với \(H\) qua \(I\). Tứ giác \(AHCE\) là hình gì ? Vì sao ?
Các câu sau đúng hay sai ?
a) Nếu tam giác \(ABC\) vuông tại \(C\) thì điểm \(C\) thuộc đường tròn có đường kính là \(AB\) (h.\(88\))
b) Nếu điểm \(C\) thuộc đường tròn có đường kính là \(AB\) (\(C\) khác \(A\) và \(B\)) thì tam giác \(ABC\) vuông tại \(C\) (h.\(89\)).
Cho hình bình hành \(ABCD\). Các tia phân giác của các góc \(A, B, C, D\) cắt nhau như trên hình \(91.\) Chứng minh rằng \(EFGH\) là hình chữ nhật.
Tứ giác \(ABCD\) có hai đường chéo vuông góc với nhau. Gọi \(E, F, G, H\) theo thứ tự là trung điểm của các cạnh \(AB, BC, CD, DA\). Tứ giác \(EFGH\) là hình gì ? Vì sao ?
Đố. Một đội công nhân đang trồng cây trên đoạn đường \(AB\) thì gặp chướng ngại vật che lấp tầm nhìn (h.\(92\)). Đội đã dựng các điểm \(C, D, E\) như trên hình vẽ rồi trồng cây tiếp trên đoạn thẳng \(EF\) vuông góc với \(DE\). Vì sao \(AB\) và \(EF\) cùng nằm trên một đường thẳng ?
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là chân đường vuông góc hạ từ H xuống AB và AC.
a) Chứng minh EF = AH.
b) Kẻ trung tuyến AM của tam giác ABC. Chứng minh \(AM \bot EF.\)
Cho tam giác ABC vuông tại A. Một đường thẳng d cắt hai cạnh AB, AC theo thứ tự tại các điểm D và E. Gọi I, J, K, H lần lượt là trung điểm của các đoạn thẳng DE, BE, BC, DC. Chứng minh IHKJ là hình bình chữ nhật.
Cho tam giác ABC có ba góc nhọn (AB < AC). Gọi AH là đường cao và M, N, P lần lượt là trung điểm cỉa AB, AC và BC. Gọi D là điểm đối xứng của H qua M.
a) Chứng minh tứ giác DAHB là hình chữ nhật.
b) Tìm điều kiện của \(\Delta ABC\(để AMPN là hình chữ nhật
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ B xuống AC. Gọi M, N, P lần lượt là trung điểm của AB, AH và DC.
a)Chứng minh MBCP là hình chữ nhật.
b)Chứng minh \(BN \bot NP.\)
Cho tam giác ABC. Từ đỉnh A kẻ các đường thẳng AP, AQ theo thứ tự vuông góc với các tia phân giác trong và phân giác ngoài của góc B, các đường thẳng AR, AS theo thứ tự vuông góc với các ta phân giác trong và ngoài của góc C.
a) Chứng minh tứ giác APBQ là hình chữ nhật.
b) Chứng minh rằng 4 điểm Q, R, P, S thẳng hàng.
Cho hình bình hành ABCD. Phân giác các góc A, B, C, D cắt nhau tại các điểm M, N, P, Q. Chứng minh rằng tứ giác MNPQ là hình chữ nhật.
Tìm tập hợp (quỹ tích) các điểm cách đều hai đường thẳng song song cho trước.
Cho điểm A nằm ngoài đường thẳng d. Tìm tập hợp các trung điểm của đoạn thẳng AM khi M di chuyển trên đường thẳng d.
Cho tam giác ABC cân tại A, các điểm M, N theo thứ tự di động trên các cạnh AB và AC sao cho AM = CN. Hãy tìm tập hợp các trung điểm I của MN.
Cho hình chữ nhật ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Lấy E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.
a) Chứng minh tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành.
b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. Chứng minh tứ giác CHFK là hình chữ nhật và I là trung điểm của đoạn HK.
c) Chứng minh ba điểm E, H, K thẳng hàng.