Đề bài
Cho hình 15.
a) Chứng minh rằng: \(CI \bot AB.\)
b) Cho \(\widehat {ACB} = 40^\circ \). Tính \(\widehat {BI{\rm{D}}},\widehat {DIE}\)
Đề bài
Cho \(H\) là trực tâm của tam giác \(ABC\) không vuông. Tìm trực tâm của các tam giác \(HAB, HAC, HBC.\)
Đề bài
Tam giác \(ABC\) có các đường cao \(BD\) và \(CE\) bằng nhau. Chứng minh rằng tam giác đó là tam giác cân.
Đề bài
Cho tam giác \(ABC\) vuông tại \(A,\) đường cao \(AH.\) Tìm trực tâm của tam giác \(ABC, AHB, AHC.\)
Đề bài
Cho hình 16. Có thể khẳng định rằng các đường thẳng \(AC, BD, KE\) cùng đi qua một điểm hay không? Vì sao?
Đề bài
Cho tam giác \(ABC \) cân tại \(A.\) Vẽ điểm \(D\) sao cho \(A\) là trung điểm của \(BD.\) Kẻ đường cao \(AE\) của \(∆ABC,\) đường cao \(AF\) của \(∆ACD.\) Chứng minh rằng \(\widehat {EAF} = 90^\circ \)
Đề bài
Cho tam giác \(ABC\) cân tại \(A,\) đường cao \(CH\) cắt tia phân giác của góc \(A\) tại \(D.\) Chứng minh rằng \(BD\) vuông góc với \(AC.\)
Đề bài
Cho tam giác \(ABC\) có \(AB = AC = 13cm, BC = 10cm.\) Tính độ dài đường trung tuyến \(AM.\)
Đề bài
Cho tam giác \(ABC\) có \(\widehat B,\widehat C\) là các góc nhọn, \(AC > AB.\) Kẻ đường cao \(AH.\) Chứng minh rằng \(\widehat {HAB} < \widehat {HAC}.\)
Đề bài
Cho tam giác \(ABC.\) Qua mỗi đỉnh \(A, B, C\) kẻ các đường thẳng song song với cạnh đối diện, chúng cắt nhau tạo thành tam giác \(DEF\) (h.17)
a) Chứng minh rằng \(A\) là trung điểm \(EF.\)
b) Các đường cao của tam giác \(ABC\) là các đường trung trực của tam giác nào?
Bài 9.1
Hãy chọn khẳng định đúng trong các khẳng định sau:
(A) Trực tâm của một tam giác bao giờ cũng nằm trong tam giác.
(B) Trực tâm của một tam giác bao giờ cũng nằm ngoài tam giác.
(C) Trực tâm của một tam giác bao giờ cũng trùng với một đỉnh của tam giác.
(D) Cả ba khẳng định trên đều sai.
Bài 9.4
Cho tam giác nhọn \(ABC\) cân tại đỉnh \(A.\) Hai đường cao xuất phát từ đỉnh \(B\) và đỉnh \(C\) cắt nhau tại \(M.\) Hãy tìm các góc của tam giác \(ABC,\) biết \(\widehat {BMC} = 140^\circ \).