a)
Giả sử \({T_{\overrightarrow v }}\) là phép tịnh tiến theo vectơ \(\overrightarrow v \)
\(\eqalign{
& {T_{\overrightarrow v }}:\,M \to M' \cr
& \,\,\,\,\,\,\,\,N \to N' \cr} \)
Ta có \(\overrightarrow {MM'} = \overrightarrow {NN'} = \overrightarrow v \Rightarrow \overrightarrow {MN} = \overrightarrow {M'N'} \Rightarrow MN = M'N'\)
Vậy phép tịnh tiến là một phép dời hình.
b)
Giả sử \({\tilde N_d}\) là phép đối xứng qua đường thẳng \(d\)
Giả sử
\({{\tilde N}_d}:M \to M'\)
\(N \to N'\)
Gọi \(H\) và \(K\) lần lượt là trung điểm của \(MM’\) và \(NN’\).
Ta có:
\(\eqalign{
& \overrightarrow {MN} + \overrightarrow {M'N'} = \left( {\overrightarrow {MH} + \overrightarrow {HK} + \overrightarrow {KN} } \right) + \left( {\overrightarrow {M'H} + \overrightarrow {HK} + \overrightarrow {KN'} } \right) = 2\overrightarrow {HK} \cr
& \overrightarrow {MN} - \overrightarrow {M'N'} = \overrightarrow {HN} - \overrightarrow {HM} - \overrightarrow {HN'} + \overrightarrow {HM'} = \overrightarrow {N'N} + \overrightarrow {MM'} \cr} \)
Vì \(\overrightarrow {MM'} \bot \overrightarrow {HK} \) và \(\overrightarrow {N'N} \bot HK\) nên
\(\eqalign{
& {\overrightarrow {MN} ^2} - {\overrightarrow {M'N'} ^2} = \left( {\overrightarrow {MN} + \overrightarrow {M'N'} } \right)\left( {\overrightarrow {MN} - \overrightarrow {M'N'} } \right) = 2\overrightarrow {HK} \left( {\overrightarrow {N'N} + \overrightarrow {MM'} } \right) = 0 \cr
& \Rightarrow M{N^2} = M'N{'^2} \Rightarrow MN = M'N' \cr} \)
Vậy phép đối xứng qua \(d\) là phép dời hình.
c) Nếu phép đối xứng qua tâm \(O\) biến hai điểm \(M, N\) lần lượt thành hai điểm \(M’, N’\) thì \(\overrightarrow {OM'} = - \overrightarrow {OM} ;\overrightarrow {ON'} = - \overrightarrow {ON} \)
suy ra \(\overrightarrow {M'N'} = \overrightarrow {ON'} - \overrightarrow {OM'} = - \overrightarrow {ON} + \overrightarrow {OM} = \overrightarrow {NM} \Rightarrow M'N' = MN\)
Vậy phép đối xứng tâm \(O\) là một phép dời hình.