a) Tam giác \(SAB\) vuông cân tại S nên \(SA = SB = a\).
Cạnh huyền chính bằng đường kính đáy do vậy bán kính đáy \(r = \dfrac{a\sqrt{2}}{2}\), đường sinh \(l = a\).
Gọi \(h\) là độ dài đường cao của hình nón ta có: \(h = \sqrt {{l^2} - {r^2}} = \sqrt {{a^2} - \dfrac{{{a^2}}}{2}} = \dfrac{{a\sqrt 2 }}{2}\)
Vậy \(S_{xq} = πrl =\) \( \dfrac{\sqrt{2}}{2}\pi a^2\) ( đơn vị diện tích)
\(S_{đáy}\) = \( \pi r^{2}\) = \( \pi \dfrac{a^{2}}{2}\) ( đơn vị diện tích);
\(V\)nón = \( \dfrac{1}{3}\pi r^{2}h\) \( = \dfrac{\sqrt{2}}{12}\pi a^{3}\) (đơn vị thể tích)
b) Gọi tâm đáy là \(O\) và trung điểm cạnh \(BC\) là \(M\) ta có: \({OM \bot BC}\) (quan hệ vuông góc giữa đường kính và dây cung).
Ta có:
\[\begin{array}{l}\left\{ \begin{array}{l}BC \bot OM\\BC \bot SO\end{array} \right. \Rightarrow BC \bot \left( {SOM} \right) \Rightarrow BC \bot SM\\\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SM \bot BC\\OM \bot BC\end{array} \right. \\\Rightarrow \widehat {\left( {\left( {SBC} \right);\left( {ABC} \right)} \right)} = \widehat {\left( {SM;OM} \right)} = \widehat {SMO} = {60^0}\end{array}\]
Ta có: \(SM = \dfrac{{SO}}{{\sin 60}} = \dfrac{{\dfrac{{a\sqrt 2 }}{2}}}{{\dfrac{{\sqrt 3 }}{2}}} = \dfrac{{a\sqrt 6 }}{3}\).
\(OM = SO.\cot 60 = \dfrac{{a\sqrt 2 }}{2}.\dfrac{1}{{\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{6}\)
Ta có \(∆ OMB\) vuông ở \(M\) nên \( BM^{2}= BO^{2} - OM^{2} = \dfrac{a^{2}}{3}\)
Vậy \(BM = \dfrac{a}{\sqrt{3}}\Rightarrow BC =2BM= \dfrac{2a}{\sqrt{3}}\)
Do đó \(S = {{SM.BC}\over2}\) = \( \dfrac{\sqrt{2}}{3}a^{2}\) (đơn vị diện tích).