\(a)\left\{ \matrix{
4x - {\rm{9}}y = 3 \hfill \cr
- 5x - 3y = 1 \hfill \cr} \right. \\ \Leftrightarrow \left\{ \matrix{
y = \dfrac{4 }{9}x - \dfrac{1}{3} (d)\hfill \cr
y = - \dfrac{5}{3}x - \dfrac{1}{ 3} (d') \hfill \cr} \right.\)
Ta có \(a = \dfrac{4 }{9}\), \(a' =- \dfrac{5}{3} \) nên \(a ≠ a'\).
Do đó \((d)\),\((d')\) cắt nhau.
Vậy hệ phương trình đã cho có nghiệm duy nhất.
\(b)\left\{ \matrix{
2,3x + 0,{\rm{8}}y = 5 \hfill \cr
2y = {\rm{6}} \hfill \cr} \right. \\ \Leftrightarrow \left\{ \matrix{
y = - \dfrac{23}{8}x + \dfrac{25} {4} \hfill \cr
y = 3 \hfill \cr} \right.\)
Đường thẳng \(y = \displaystyle - {{23} \over 8}x + {{25} \over 4}\) cắt hai trục tọa độ, đường thẳng \(y = 3\) song song với trục hoành nên hai đường thẳng trên cắt nhau.
Vậy hệ phương trình đã cho có nghiệm duy nhất.
\(c)\left\{ \matrix{
3x = - 5 \hfill \cr
x + 5y = - 4 \hfill \cr} \right. \\ \Leftrightarrow \left\{ \matrix{
x = - \dfrac{5}{3} \hfill \cr
y = - \dfrac{1}{5}x - \dfrac{4}{5} \hfill \cr} \right.\)
Đường thẳng \(x = \displaystyle - {5 \over 3}\) song song với trục tung, đường thẳng \(y = \displaystyle - {1 \over 5}x - {4 \over 5}\) cắt hai trục tọa độ nên hai đường thẳng đó cắt nhau.
Vậy hệ phương trình đã cho có nghiệm duy nhất.
\(d)\left\{ \matrix{
3x - y = 1 \hfill \cr
{\rm{6}}x - 2y = 5 \hfill \cr} \right. \\ \Leftrightarrow \left\{ \matrix{
y = 3x - 1(d) \hfill \cr
y = 3x - \dfrac{5}{2} (d')\hfill \cr} \right.\)
Ta có \(a = 3,b = -1\) và \(a' =3, b' =- \dfrac{5}{2} \) nên \(a = a', b ≠ b'\).
Do đó \((d)\),\((d')\) song song với nhau.
Vậy hệ phương trình đã cho vô nghiệm.