a) Do \(\left| a \right| \ge 0\) và \(\left| b \right| \ge 0\) nên \(\left| a \right| + \left| b \right| \ge 0\)
Vì vậy \(\left| a \right| + \left| b \right| = 0\) khi \(\left| a \right| = \left| b \right| = 0\) hay \(a = b = 0.\)
b) Do \(\left| {a + 5} \right| \ge 0\) và \(\left| {b - 2} \right| \ge 0\) nên \(\left| {a + 5} \right| + \left| {b - 2} \right| \ge 0\)
Vì vậy \(\left| {a + 5} \right| + \left| {b - 2} \right| = 0\) khi \(a + 5 = 0\) hay \(a = -5\)
và \(b - 2 = 0\) hay \(b = 2\)