Ta có:
\(\dfrac{1}{2}\left( {x + y + z} \right)\)\(\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right]\)
\( = \dfrac{1}{2}\left( {x + y + z} \right)\)\(\left[ {\left( {{x^2} - 2xy + {y^2}} \right) + \left( {{y^2} - 2yz + {z^2}} \right) + \left( {{z^2} - 2zx + {x^2}} \right)} \right]\)
\( = \dfrac{1}{2}\left( {x + y + z} \right)\)\(\left( {{x^2} - 2xy + {y^2} + {y^2} - 2yz + {z^2} + {z^2} - 2zx + {x^2}} \right)\)
\( = \dfrac{1}{2}\left( {x + y + z} \right)\)\(\left( {2{x^2} + 2{y^2} + 2{z^2} - 2xy - 2yz - 2zx} \right)\)
\( = \left( {x + y + z} \right)\)\(\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)\)
\( = {x^3} + x{y^2} + x{z^2} - {x^2}y - xyz - {x^2}z\)
\( + {x^2}y + {y^3} + y{z^2} - x{y^2} - {y^2}z - xyz\)
\( + {x^2}z + {y^2}z + {z^3} - xyz - y{z^2} - x{z^2}\)
\( = {x^3} + {y^3} + {z^3} - 3xyz\)
Vế trái bằng vế phải nên đẳng thưc được chứng minh.
a) Nếu \(x \ge 0,y \ge 0,z \ge 0\) thì:
\(x + y + z \ge 0\)
\({\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - z} \right)^2} \ge 0\)
Suy ra:
\(\eqalign{
& {x^3} + {y^3} + {z^3} - 3xyz \ge 0 \cr
& \Leftrightarrow {x^3} + {y^3} + {z^3} \ge 3xyz \cr} \)
Hay: \(\dfrac{{{x^3} + {y^3} + {z^3}}}{3} \ge xyz\)
b) Nếu \(a \ge 0,b \ge 0,c \ge 0\) thì \(\root 3 \of a \ge 0,\root 3 \of b \ge 0,\root 3 \of {c \ge 0} \)
Đặt \(x = \root 3 \of a ,y = \root 3 \of b ,z = \root 3 \of c \) thì x, y, z cũng không âm.
Từ chứng minh trên, ta có: \(\dfrac{{{x^3} + {y^3} + {z^3}}}{3} \ge xyz\)
Hay:
\(\eqalign{
& {{{{\left( {\root 3 \of a } \right)}^3} + {{\left( {\root 3 \of b } \right)}^3} + {{\left( {\root 3 \of c } \right)}^3}} \over 3} \cr
& \ge \left( {\root 3 \of a } \right)\left( {\root 3 \of b } \right)\left( {\root 3 \of c } \right) \cr
& \Leftrightarrow {{a + b + c} \over 3} \ge \root 3 \of {abc} \cr} \)