Bài 95 trang 21 SBT toán 9 tập 1

Đề bài

Áp dụng bất đẳng thức Cô-si cho ba số không âm, chứng minh: 

a) Trong các hình hộp chữ nhật có cùng tổng ba kích thước thì hình lập phương có thể tích lớn nhất.

b) Trong các hình hộp chữ nhật có cùng thể tích thì hình lập phương có tổng ba kích thước bé nhất.   

Lời giải

Gọi \(a, b, c\) lần lượt là ba kích thước của hình hộp chữ nhật.

Ta có: \(a > 0,b > 0,c > 0\) suy ra: \(\sqrt a  > 0,\sqrt b  > 0,\sqrt c  > 0\)

Tổng ba kích thước của hình hộp chữ nhật: 

\(P = a + b + c\)

Thể tích của hình hộp chữ nhật: 

\(V = a.b.c\)

a) Áp dụng bất đẳng thức Cô-Si:

\(\begin{array}{l}
\dfrac{{a + b + c}}{3} \ge \sqrt[3]{{abc}}\\
\Leftrightarrow \sqrt[3]{V} \le \dfrac{p}{3} \Leftrightarrow V \le \dfrac{{{p^3}}}{{27}}
\end{array}\) 

Suy ra \({V_{\max }} = \dfrac{{{P^3}}}{{27}}\), dấu "=" xảy ra khi \(a=b=c\)

Vậy trong các hình hộp chữ nhật có cùng tổng ba kích thước thì hình lập phương có thể tích lớn nhất.

b) Áp dụng bất đẳng thức Cô-Si:

\(\dfrac{{a + b + c}}{3} \ge \sqrt[3]{{abc}}\)

\(\begin{array}{l} \Leftrightarrow \dfrac{p}{3} \ge \sqrt[3]{V} \Leftrightarrow p \ge 3\sqrt[3]{V}\\\end{array}\)

 Suy ra \({P_{\min }} = 3\sqrt[3]{V}\), dấu "=" xảy ra khi \(a=b=c\)

Vậy trong các hình hộp chữ nhật có cùng thể tích thì hình lập phương có tổng ba kích thước bé nhất.