Bài 96 trang 92 SBT toán 8 tập 1

Đề bài

Cho hình bình hành \(ABCD,\) \(O\) là giao điểm của hai đường chéo. Một đường thẳng đi qua \(O\) cắt hai cạnh đối \(AD,\) \(BC\) ở \(E, F.\) Chứng minh rằng các điểm \(E\) và \(F\) đối xứng nhau qua điểm \(O.\)

Lời giải

Xét \(∆ OED\) và \(∆ OFB:\)

\(\widehat {EOD} = \widehat {FOB}\) (đối đỉnh)

\(OD = OB\) (tính chất hình bình hành)

\(\widehat {ODE} = \widehat {OBF}\) (so le trong)

Do đó: \(∆ OED = ∆ OFB\;\; (g.c.g)\)

\(⇒ OE = OF\)

nên \(O\) là trung điểm của \(EF\) hay điểm \(E\) đối xứng với điểm \(F\) qua điểm \(O.\)