Ta có
+\(\omega = \dfrac{1}{{\sqrt {LC} }}\\ \Rightarrow C = \dfrac{1}{{L{\omega ^2}}}\\ = \dfrac{1}{{{{50.10}^{ - 3}}{{.2000}^2}}} = {5.10^{ - 6}}(F)\)
+\({I_0} = {q_0}\omega \\ \Rightarrow {q_0} = \dfrac{{{I_0}}}{\omega } = \dfrac{{0,12}}{{2000}} = {6.10^{ - 5}}(C)\)
+\({q_0} = C{U_0} \\\Rightarrow {U_0} = \dfrac{{{q_0}}}{C} = \dfrac{{{{6.10}^{ - 5}}}}{{{{5.10}^{ - 6}}}} = 12(V)\)
+ \(u,i\) vuông pha nên có công thức độc lập với thời gian giữa \(u;i\) \({\left( {\dfrac{u}{{{U_0}}}} \right)^2} + {\left( {\dfrac{i}{{{I_0}}}} \right)^2} = 1\)
\(i = \dfrac{I}{2} = \dfrac{{{I_0}}}{{2\sqrt 2 }}\)
\(\)\(\begin{array}{l} \Rightarrow {\left( {\dfrac{u}{{12}}} \right)^2} + {\left( {\dfrac{1}{{2\sqrt 2 }}} \right)^2} = 1\\ \Rightarrow |u| = 3\sqrt {14} (V)\end{array}\)