Trong các mệnh đề sau, mệnh đề nào đúng?
a. Hai đường thẳng chéo nhau thì không có điểm chung
b. Hai đường thẳng không có điểm chung thì chéo nhau
c. Hai đường thẳng chéo nhau thì không cùng thuộc một mặt phẳng
d. Hai đường thẳng không song song thì chéo nhau
Trong các mệnh đề sau, mệnh đề nào đúng ?
a. Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau
b. Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau
c. Hai mặt phẳng phân biệt không song song thì cắt nhau
d.Hai mặt phẳng phân biệt cùng song song với một mặt phẳng thứ ba thì song song với nhau
e. Một đường thẳng cắt một trong hai đường thẳng song song thì cắt đường thẳng còn lại
f. Một mặt phẳng cắt một trong hai đường thẳng song song thì cắt đường thẳng còn lại
g. Một đường thẳng cắt một trong hai mặt phẳng song song thì cắt mặt phẳng còn lại
Trong các hình sau, hình nào là hình biểu diễn của một tứ diện ?
Cho hai hình bình hành ABCD VÀ ABEF nằm trong hai mặt phẳng khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC, BF sao cho MC = 2AM, NF = 2BN. Qua M, N, kẻ các đường thẳng song song với AB cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng:
a. MN // DE
b. M1N1 // mp(DEF)
c. mp(MNN1M1) // mp(DEF)
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G, G’ lần lượt là trọng tâm của tam giác ABC và A’B’C’. Một mặt phẳng (α) cắt các cạnh AA’, BB’, CC, GG’ lần lượt tại A1, B1, C1 và G1. Chứng minh rằng:
a. GG’ song song và bằng cạnh bên của hình lăng trụ
b. G1 là trọng tâm của tam giác A1B1C1
c. \({G_1}G' = {1 \over 3}\left( {{A_1}A' + {B_1}B' + {C_1}C'} \right);\)
\({G_1}G = {1 \over 3}\left( {{A_1}A + {B_1}B + {C_1}C} \right)\)
Cho hình hộp ABCD.A’B’C’D’. Vẽ thiết diện của hình hộp tạo bởi mặt phẳng đi qua hai trung điểm M, N của các cạnh AB, AD và tâm O của mặt CDD’C’
Cho hình hộp ABCD.A’B’C’D’. Trên ba cạnh AB, DD’, C’B’ lần lượt lấy ba điểm M, N, P không trùng với các đỉnh sao cho \({{AM} \over {AB}} = {{D'N} \over {D'D}} = {{B'P} \over {B'C'}}\)
a. Chứng minh rằng mp(MNP) và mp(AB'D’) song song với nhau
b. Xác định thiết diện của hình hộp khi cắt bởi mp(MNP)
Cho hai tia Ax và By nằm trên hai đường thẳng chéo nhau. Một điểm M chạy trên Ax và một điểm N chạy trên By sao cho AM = kBN (k > 0 cho trước)
a. Chứng minh rằng MN song song với một mặt phẳng cố định
b. Tìm tập hợp các điểm I thuộc đoạn MN sao cho IM = kIN