Cho tứ diện ABCD có trọng tâm G. Mệnh đề nào sau đây là sai ?
A. \(\overrightarrow {OG} = {1 \over 4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\)
B. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \)
C. \(\overrightarrow {AG} = {2 \over 3}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\)
D. \(\overrightarrow {AG} = {1 \over 4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\)
Trả lời
(A), (B) đúng.
Gọi G1 là trọng tâm ΔBCD ta có \(\overrightarrow {AG} = {3 \over 4}\overrightarrow {A{G_1}} = {1 \over 4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\) nên (D) đúng.
Vậy chọn (C)