Câu 15 trang 142 SGK Đại số và Giải tích 11 Nâng cao

Bài 15. Tìm giới hạn của các dãy số (un) vớia.  \({u_n} = {{{3^n} + 1} \over {{2^n} - 1}}\)b.  \({u_n} = {2^n} - {3^n}\)

Lời giải

Giải:a. Chia cả tử và mẫu cho 3ta được :  \({u_n} = {{1 + {{\left( {{1 \over 3}} \right)}^n}} \over {{{\left( {{2 \over 3}} \right)}^n} - {{\left( {{1 \over 3}} \right)}^n}}}\)\(\eqalign{
& \lim \left[ {1 + {{\left( {{1 \over 3}} \right)}^n}} \right] = 1 > 0\text{ và }\lim \left[ {{{\left( {{2 \over 3}} \right)}^n} - {{\left( {{1 \over 3}} \right)}^n}} \right] = 0\,; \cr 
& \text{ nên }\,\lim {u_n} = + \infty \cr} \)b.\(\eqalign{
& {u_n} = {3^n}\left[ {{{\left( {{2 \over 3}} \right)}^n} - 1} \right] \cr 
& \lim {3^n} = + \infty \text{ và }\lim \left[ {{{\left( {{2 \over 3}} \right)}^n} - 1} \right] = - 1 < 0 \cr 
&\text{ nên }{{\mathop{\rm lim}\nolimits}\,u _n} = - \infty \cr} \)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”