Ta vẽ đường kính AM của đường tròn. Khi đó BH // MC ( vì cùng vuông góc với AC) hay BHCM là hình bình hành
Nếu gọi I là trung điểm của BC thì I cố định và cũng là trung điểm của MH
Vậy phép đối xứng qua điểm I biến M thành H. Khi A chạy trên đường tròn \((O ; R)\) thì M chạy trên đường tròn \((O ; R)\). Do đó, H nằm trên đường tròn là ảnh của đường tròn \((O ; R)\) qua phép đối xứng tâm với tâm I