Ta có: \(f'\left( x \right) = {1 \over {{x^2}}}\)
Phương trình tiếp tuyến (d) của quỹ đạo (C) tại tiếp điểm \({M_0}\left( {{x_0}; - 1 - {1 \over {{x_0}}}} \right)\) là :
\(\eqalign{ & y = {1 \over {x_0^2}}\left( {x - {x_0}} \right) - 1 - {1 \over {{x_0}}} \cr & hay\,x_0^2 + 2{x_0} - x + x_0^2y = 0 \cr} \)
Ta phải tìm x0 > 0, sao cho (d) lần lượt đi qua 4 điểm có tọa độ (1 ; 0), (2 ; 0), (3 ; 0) và (4 ; 0).
a. Với x = 1, y = 0, ta có \(x_0^2 + 2{x_0} - 1 = 0.\,Suy\,ra\,{x_0} = - 1 + \sqrt 2 \approx 0,4142\)
b. Với x = 2, y = 0, ta có \(x_0^2 + 2{x_0} - 2 = 0.\,Suy\,ra\,{x_0} = - 1 + \sqrt 3 \approx 0,7321\)
c. Với x = 3, y = 0, ta có \(x_0^2 + 2{x_0} - 3 = 0.\,Suy\,ra\,{x_0} = 1\)
d. Với x = 4, y = 0, ta có \(x_0^2 + 2{x_0} - 4 = 0.\,Suy\,ra\,{x_0} = - 1 + \sqrt 5 \approx 1,2361\)