Ta có:
\(\displaystyle \left\{ {\matrix{{{u_2} = 4} \cr {{u_4} = 9} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{{u_1}q = 4\left( 1 \right)} \cr {{u_1}{q^3} = 9\left( 2 \right)} \cr} } \right.\)
Lấy (2) chia (1) ta được : \(\displaystyle {q^2} = {9 \over 4} \Rightarrow q = - {3 \over 2}\) (vì \(\displaystyle q < 0\))
Từ (1) suy ra \(\displaystyle {u_1} = {4 \over q} = - {8 \over 3}\)