a. Gọi q là công bội của cấp số nhân đã cho.
Ta có: \(q = {{{u_2}} \over {{u_1}}} = {{54} \over {18}} = 3\)
Giả sử cấp số nhân có n số hạng ta có :
\(\eqalign{
& 39366 = {u_n} = {u_1}.{q^{n - 1}} = {18.3^{n - 1}} \cr
& \Rightarrow {3^{n - 1}} = {{39366} \over {18}} = 2187 = {3^7} \Rightarrow n = 8 \cr
& \Rightarrow {S_8} = {u_1}.{{1 - {q^8}} \over {1 - q}} = 18.{{1 - {3^8}} \over {1 - 3}} = 59040 \cr} \)
b. Tương tự :
\(\eqalign{
& q = {{{u_2}} \over {{u_1}}} = - {1 \over 2} \cr
& {u_n} = {u_1}.{q^{n - 1}} \Rightarrow {1 \over {1048576}} = {1 \over {256}}.{\left( { - {1 \over 2}} \right)^{n - 1}} \cr
& \Rightarrow n = 13 \Rightarrow {S_{13}} = {1 \over {256}}.{{1 - {{\left( {{{ - 1} \over 2}} \right)}^{13}}} \over {1 - \left( { - {1 \over 2}} \right)}} = {{2731} \over {{2^{10}}}} = {{2731} \over {1048576}} \cr} \)