Câu 44 trang 47 SGK Đại số và Giải tích 11 Nâng cao

Bài 44. Xét hàm số \(y = f(x) = \sinπx\).

a. Chứng minh rằng với mỗi số nguyên chẵn \(m\) ta có \(f(x + m) = f(x)\) với mọi \(x\).

b. Lập bảng biến thiên của hàm số trên đoạn \([-1 ; 1]\).

c. Vẽ đồ thị của hàm số đó.

Lời giải

a. Đặt \(m = 2k, k \in\mathbb Z\). Ta có :

\(f(x + m) = \sinπ(x + m) = \sin(πx + 2kπ) = \sinπx = f(x)\)

b. Bảng biến thiên

 

c. Đồ thị