a) M’ có tọa độ \({(x_1},{\rm{ }}y{_1})\) với \(\left\{ {\matrix{{x{'_1} = {x_1}\cos \alpha - {y_1}\sin \alpha + a} \cr {y{'_1} = {x_1}\sin \alpha + {y_1}\cos \alpha + b} \cr} } \right.\)
N’ có tọa độ \({(x_2},{\rm{ }}y{_2})\) với \(\left\{ {\matrix{{x{'_2} = {x_2}\cos \alpha - {y_2}\sin \alpha + a} \cr {y{'_2} = {x_2}\sin \alpha + {y_2}\cos \alpha + b} \cr} } \right.\)
b) Ta có \(d=MN=\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} \)
\(\eqalign{
& d' = M'N' = \sqrt {{{\left( {x{'_1} - x{'_2}} \right)}^2} + {{\left( {y{'_1} - y{'_2}} \right)}^2}} \cr
& = \sqrt {{{\left[ {\left( {{x_1} - {x_2}} \right)\cos \alpha - \left( {{y_1} - {y_2}} \right)\sin \alpha } \right]}^2} + {{\left[ {\left( {{x_1} - {x_2}} \right)\sin \alpha + \left( {{y_1} - {y_2}} \right)\cos \alpha } \right]}^2}} \cr
& = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2}{{\cos }^2}\alpha + {{\left( {{y_1} - {y_2}} \right)}^2}{{\sin }^2}\alpha + {{\left( {{x_1} - {x_2}} \right)}^2}{{\sin }^2}\alpha + {{\left( {{y_1} - {y_2}} \right)}^2}{{\cos }^2}\alpha } \cr
& = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} \cr} \)
c) Từ câu b suy ra \(MN=M'N'\) do đó \(F\) là phép dời hình.
d)
\(Khi\,\,\alpha = 0,\,\,\text{ ta có }\,\,\left\{ \matrix{ x' = x + a \hfill \cr y' = y + b \hfill \cr} \right.\)
Vậy \(F\) là phép tịnh tiến vectơ \(\overrightarrow u \left( {a;b} \right).\)