Câu C2 130 trang SGK Vật lý 12

Quan sát các vân giao thoa, có thể nhận biết vân nào là vân chính giữa không?

Lời giải

Nếu dùng ánh sáng đơn sắc, thì trên màn ta thu được các vân sáng và vân tối xen kẽ nhau đều đặn, ta không thể biết được vân nào là vân chính giữa.

Nếu dùng ánh sáng trắng, thì trên màn ta thu được vân chính giữa có màu trắng nên ta có thể nhận biết được vân chính giữa.


Bài Tập và lời giải

Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 1 – Đại số và giải tích 11

I. PHẦN TRẮC NGHIỆM

Câu 1: Với những giá trị nào của \(x\) thì giá trị của các hàm số tương ứng sau bằng nhau \(y = \tan 3x\) và \(\tan (\dfrac{\pi }{3} - 2x)\) .          

A. \(x = \dfrac{\pi }{{15}} + k\dfrac{\pi }{5},\,k \in \mathbb{Z}\) 

B.  \(x = \dfrac{\pi }{{15}} + k\pi ,\,k \in \mathbb{Z}\)  

C. \(x = \dfrac{\pi }{{15}} + k\dfrac{\pi }{2},\,k \in \mathbb{Z}\)  

D. \(x = \dfrac{\pi }{5} + k\dfrac{\pi }{5},\,k \in \mathbb{Z}\)

Câu 2: Tìm m để phương trình \(\dfrac{{\cos x + 2\sin x + 3}}{{2\cos x - \sin x + 4}} = m\) có nghiệm.

A. \( - 3 \le m \le 2\)              B. \(m > 2\)

C. \(m \ge  - 3\)                     D. \(\dfrac{2}{{11}} \le m \le 2\)

Câu 3: Nghiệm của phương trình  \(\sin x + \sqrt 3 \cos x = \sqrt 2 \) là:

A. \(x =  - \dfrac{\pi }{{12}} + k2\pi ,\;x = \dfrac{{5\pi }}{{12}} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)

B. \(x =  - \dfrac{\pi }{4} + k2\pi ,\;x = \dfrac{{3\pi }}{4} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)

C. \(x = \dfrac{\pi }{3} + k2\pi ,\;x = \dfrac{{2\pi }}{3} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)

D. \(x =  - \dfrac{\pi }{4} + k2\pi ,\;x =  - \dfrac{{5\pi }}{4} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)

Câu 4 : Chọn mệnh đề đúng:

A. Hàm số \(y = \sin x\) có chu kỳ \(T = \pi \)

B. Hàm số \(y = \cos x\) và hàm số \(y = \tan x\) có cùng chu kỳ.

C. Hàm số \(y = \cot x\) và hàm số \(y = \tan x\) có cùng chu kỳ.

D. Hàm số \(y = \cot x\) có chu kỳ \(T = 2\pi \)

Câu 5: Nghiệm dương bé nhất của phương trình \(2{\sin ^2}x + 5\sin x - 3 = 0\)  là:

A. \(x = \dfrac{\pi }{3}.\)     B. \(x = \dfrac{\pi }{{12}}.\)

C. \(x = \dfrac{\pi }{6}.\)     D. \(x = \dfrac{{5\pi }}{6}.\)

Câu 6: Hàm số nào sau đây có đồ thị không là đường hình sin?

A. \(y = \sin x\)                        B. \(y = \cos x\)

C. \(y = \sin 2x\)                      D. \(y = \cot x\)

Câu 7: Tập xác định của hàm số\(y = f(x) = 2\cot (2x - \dfrac{\pi }{3}) + 1\) là:

A. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{6} + k2\pi ,k \in \mathbb{Z}} \right\}\)   

B. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{6} + \dfrac{{k\pi }}{2},k \in \mathbb{Z}} \right\}\)

C. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{6} + k\pi ,k \in \mathbb{Z}} \right\}\)     

D. \(\mathbb{R}\backslash \left\{ {\dfrac{{5\pi }}{{12}} + \dfrac{{k\pi }}{2},k \in \mathbb{Z}} \right\}\)

Câu 8: Nghiệm của phương trình \(\tan (x - \dfrac{\pi }{2}) = \sqrt 3 \) là:

A. \(x = \dfrac{{5\pi }}{6} + k\pi \).                            

B. \(x = \dfrac{{5\pi }}{6} + k2\pi \).                          

C. \(x = \dfrac{\pi }{6} + k2\pi \).                               

D. \(x = \dfrac{\pi }{6} + k\pi \).

Câu 9: Tập nghiệm của phương trình \(\cos 3x =  - 1\) là:

A. \(\left\{ { - \dfrac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}.\) 

B. \(\left\{ {\pi  + k2\pi |k \in \mathbb{Z}} \right\}.\)

C. \(\left\{ {\dfrac{\pi }{3} + \dfrac{{k2\pi }}{3}|k \in \mathbb{Z}} \right\}.\)       

D. \(\left\{ {\dfrac{{k2\pi }}{3}|k \in \mathbb{Z}} \right\}.\)

Câu 10: Trong các hàm số sau, hàm số nào là hàm số chẵn.

A. \(y = \sin \left| {2016x} \right| + c{\rm{os}}2017x\).    

B. \(y = 2016\cos x + 2017\sin x\).

C. \(y = \cot 2015x - 2016\sin x\). 

D. \(y = \tan 2016x + \cot 2017x\).

Câu 11: Nghiệm của phương trình \(\sin 2x = \dfrac{{\sqrt 2 }}{2}\) là:

A.\(\,x = \dfrac{\pi }{8} + k2\pi ;x = \dfrac{{3\pi }}{8} + k2\pi (k \in Z)\)

B. \(\,x = \dfrac{\pi }{4} + k2\pi ;x = \dfrac{{3\pi }}{4} + k2\pi \,(k \in Z)\)

C.   \(\,x = \dfrac{\pi }{4} + k\pi ;x = \dfrac{{3\pi }}{4} + k\pi (k \in Z)\)

D. \(\,x = \dfrac{\pi }{8} + k\pi ;x = \dfrac{{3\pi }}{8} + k\pi ;k \in Z)\)

Câu 12: Giá trị nhỏ nhất m của hàm số \(y = 3\sin x + 1\) là.

A. m = 4                               B. m = -2 

C. m = 3                               D. m = 1

Câu 13: Tập xác định của hàm số \(y = f(x) = \dfrac{1}{{\sqrt {1 - sinx} }}\)

A. \(\mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\)        

B. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\)                 

C. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\)               

D. \(\phi \)

Câu 14: Giá trị nhỏ nhất của hàm số \(y = {\sin ^2}x - 4\sin x - 5\) là:

A. -9                                     B. 0

C. 9                                      D. -8

Câu 15: Đồ thị hàm số nào dưới đây nhận trục tung làm trục đối xứng?

A. \(y = \sin x - \cos x\).               

B. \(y = 2\sin x\).                          

C. \(y = 2\sin \left( { - x} \right)\).                                     

D. \(y =  - 2\cos x\)

Câu 16: Nghiệm của phương trình \(2{\sin ^2}x + \sin x\cos x - 3{\cos ^2}x = 0\) là.

A. \(x = \dfrac{\pi }{4} + k\pi \); \(x = \arctan ( - \dfrac{3}{2}) + k\pi ,k \in \mathbb{Z}\)

B. \(x = \dfrac{\pi }{4} + k\pi ,k \in \mathbb{Z}\)

C. \(x = \dfrac{\pi }{4} + k\pi \);\(x = \arctan ( - 3) + k\pi ,k \in \mathbb{Z}\)

D. \(x = \arctan ( - \dfrac{3}{2}) + k\pi ,k \in \mathbb{Z}\) 

Câu 17: Phương trình lượng giác nào dưới đây có nghiệm là: \(x = \dfrac{\pi }{6} + k\pi ,k \in \mathbb{Z}.\)

A. \(\cos 2x = \dfrac{{\sqrt 3 }}{2}.\)                          

B. \(\cot x = \sqrt 3 .\)    

C. \(\tan x = \sqrt 3 .\)     

D. \(\sin \left( {x - \dfrac{\pi }{3}} \right) =  - \dfrac{1}{2}\)

Câu 18: Giá trị lớn nhất M  của hàm số \(y = \sin x + \cos x\) là.

A. \(M = 2\)                         

B. \(M = 2\sqrt 2 \)             

C. \(M = 1\)                         

D. \(M = \sqrt 2 \)

Câu 19: Nghiệm của phương trình \(\sin x = \cos x\) là:

A. \(x = \dfrac{\pi }{4} + k2\pi \).                               

B. \(x = \dfrac{\pi }{4} + k\pi \).                                 

C. \(x = \dfrac{\pi }{4}\).    

D. \(x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\).

Câu 20: Đồ thì hình bên là đồ thị của hàm số nào?


A. \(y = \sin x\)                     B. \(y = \cot x\)    

C. \(y = \tan x\)                    D. \(y = \cos x\)           

II. PHẦN TỰ LUẬN

Câu 21: Giải các phương trình sau

a) \(\sin 3x - \cos 2x = 0\)                                             

b) \(\dfrac{{\sin x + \sqrt 3 \cos x}}{{\sin x - \cos \dfrac{\pi }{4}}} = 0\)

Câu 22: Giải phương trình :   \(2{\cos ^2}\left( {\dfrac{\pi }{4} - 2x} \right) + \sqrt 3 \cos 4x = 4{\cos ^2}x - 1\)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 2 – Đại số và giải tích 11

I. PHẦN TRẮC NGHIỆM

Câu 1: Tập xác định của hàm số: \(y = \dfrac{1}{{\sqrt {1 - cos3x} }}\) là:

A.\(\left\{ {k\dfrac{\pi }{3};k \in \mathbb{Z}} \right\}\)

\(B.\mathbb{R}\backslash \left\{ {k\dfrac{{2\pi }}{3};k \in \mathbb{Z}} \right\}\)          

\(C.\left\{ {\dfrac{{k2\pi }}{3};k \in \mathbb{Z}} \right\}\)

D. \(\mathbb{R}\backslash \left\{ {\dfrac{{k\pi }}{3};k \in \mathbb{Z}} \right\}\)

Câu 2: Tập giá trị của hàm số \(y = 2\sqrt 3 \sin 2x - 2cos2x\) là:

 A. [-1; 1]            B. [-2; 2]                             

C. [-3; 3]             D. [-4; 4]

Câu 3: Phương trình \(2\sin \left( {2x + \dfrac{\pi }{4}} \right) = 1\) có các họ nghiệm là:

A. \(x =  - \dfrac{\pi }{{12}} + k2\pi ;\,k \in \mathbb{Z}\)

B. \(x = \dfrac{{7\pi }}{{12}} + k2\pi ;\,k \in \mathbb{Z}\)             

C. Cả A và B 

D. Đáp án khác

Câu 4: Hàm số \(y = cos2x\, - \,{\sin ^2}x\) là:

A. Hàm số chẵn

B. Hàm số lẻ                          

C. Hàm số không chẵn, không lẻ

D. Hàm số vừa chẵn, vừa lẻ

Câu 5: Phương trình \(\cot \left( {2x + \dfrac{\pi }{3}} \right) + 1 = 0\) có các họ nghiệm là:

\(A.\,x =  - \dfrac{{7\pi }}{{24}} + k\pi ,k \in \mathbb{Z}\)

\(B.\,x = \dfrac{{7\pi }}{{24}} + k\pi ,\,k \in \mathbb{Z}\)              

\(C.\,x = \dfrac{\pi }{{24}} + k\dfrac{\pi }{2};\,k \in \mathbb{Z}\)

D. \(x = \dfrac{{ - 7\pi }}{{24}} + k\dfrac{\pi }{2};k \in \mathbb{Z}\)

Câu 6: Phương trình \(2co{s^2}2x\, + \,\left( {\sqrt 3  - 2} \right)cos2x\, - \sqrt 3  = 0\) có các họ nghiệm là:

\(A.\,x = k2\pi ,\,x = \dfrac{{ - 5\pi }}{6} + k\pi ,\,x = \dfrac{{5\pi }}{6} + k2\pi ;\,k \in \mathbb{Z}\)

B. \(x = k\pi ; \pm \dfrac{{5\pi }}{{12}} + k\pi ;k \in \mathbb{Z}\)

\(C.\,x = k\pi ;\,x = \dfrac{{5\pi }}{{12}} + k\pi ;\,k \in \mathbb{Z}\)

D. \(x = \dfrac{{ - 5\pi }}{{12}} + k\dfrac{\pi }{2};k \in \mathbb{Z}\)

Câu 7: Phương trình \(\sqrt 2 {\mathop{\rm sinx}\nolimits}  - \sqrt 2 \cos x = \sqrt 3 \) có các họ nghiệm là:

\(\begin{array}{l}A.\,x = \dfrac{{7\pi }}{{12}} + k2\pi ;\,x = \dfrac{{11\pi }}{{12}} + k\pi ,\,k \in \mathbb{Z}\\B.\,x = \dfrac{{5\pi }}{{12}} + k2\pi ,\,x = \dfrac{{11\pi }}{{12}} + k2\pi ;\,k \in \mathbb{Z}\end{array}\)

C. \(x = \dfrac{{7\pi }}{{12}} + k2\pi ;x = \dfrac{{11\pi }}{{12}} + k2\pi ;k \in \mathbb{Z}\)

\(D.\,x = \dfrac{{7\pi }}{{12}} + k\pi ;\,x = \dfrac{{11\pi }}{{12}} + k\pi ;\,k \in \mathbb{Z}\)

Câu 8: Tổng các nghiệm thuộc đoạn  \(\left[ { - \pi ;\pi } \right]\)của phương trình \(\cos 5x + \cos x = \sin 2x - \sin 4x\)là:

A. 0                                         B. \(2\pi \)

C. \(4\pi \)                                D. \(6\pi \)

Câu 9: Giá trị nhỏ nhất của hàm số \(y = \dfrac{{\sin x + 2\cos x + 1}}{{\cos x - 3\sin x + 4}}\) là:

A. \(2\)            B.\( - \dfrac{1}{3}\)

C. \(\dfrac{{ - 1}}{2}\)            D. 1

Câu 10: Phương trình \(3{\sin ^2}x - 7\sin x\cos x - 10{\cos ^2}x = 0\) có các họ nghiệm là:

A. \(x = \dfrac{{ - \pi }}{4} + k2\pi ;x = \arctan \dfrac{{10}}{3} + k2\pi ;k \in \mathbb{Z}\)

B. \(x = \dfrac{{ - \pi }}{4} + k\pi ;x = \arctan \dfrac{7}{2} + k2\pi ;k \in \mathbb{Z}\)

C.\(x = \dfrac{{ - \pi }}{4} + k\pi ;x = \arctan \dfrac{{10}}{3} + k\pi ;k \in \mathbb{Z}\)

D. \(x = \dfrac{{ - \pi }}{4} + k2\pi ;x = \arctan \dfrac{{10}}{3} + k\pi ;k \in \mathbb{Z}\)

Câu 11: Phương trình \(2\sin x = \sqrt 2 \) có bao nhiêu nghiệm thuộc \(\left( {\pi ;6\pi } \right)\):

A.3                                          B.5

C.4                                          D.6

Câu 12: Tổng tất cả các giá trị nguyên của m để phương trình \(\left( {m + 1} \right)\sin x - 2m\cos x + 2m - 1 = 0\) vô nghiệm là:

 A. 15                          B. -15

C. 14                           D. -14

Câu 13: Có bao nhiêu giá trị nguyên của m để phương trình \(\left( {2m + 1} \right)\cos x + m - 1 = 0\) vô nghiệm .

A. 15                           B. 2

C. 3                             D. 1

Câu 14: Tìm m để phương trình \(\cos 2x - \cos x - m = 0\) có nghiệm.

A. \(\dfrac{{ - 9}}{8} \le m \le 2\)

B. \(\dfrac{{ - 9}}{8} \le m \le 1\)

C. \(m \ge \dfrac{{ - 9}}{8}\)

D. \(\dfrac{{ - 5}}{8} \le m \le 2\)

Câu 15: Phương trình \(\sqrt 3 {\cot ^2}x - 4\cot x + \sqrt 3  = 0\) có nghiệm là:

A. \(\left[ \begin{array}{l}x = \dfrac{\pi }{3} + k\pi \\x = \dfrac{\pi }{6} + k\pi \end{array} \right.\,\,\left( {k \in Z} \right)\)

B. \(\left[ \begin{array}{l}x = \dfrac{\pi }{3} + k2\pi \\x = \dfrac{\pi }{6} + k2\pi \end{array} \right.\,\,\left( {k \in Z} \right)\)

C. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{3} + k\pi \\x =  - \dfrac{\pi }{6} + k\pi \end{array} \right.\,\,\left( {k \in Z} \right)\)

D. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{3} + k2\pi \\x = \dfrac{\pi }{6} + k\pi \end{array} \right.\,\,\left( {k \in Z} \right)\)

Câu 16: Cho phương trình \(cos3x – 4 cos2x + 3cos x – 4 = 0\) có bao nhiêu nghiệm trên [0; 14]?

A. 3.                                        B. 4

C. 5                                         D. 6

Câu 17: Tập xác định của hàm số \(y = 2016{\tan ^{2017}}2x\) là

A. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).

B. \(D = \mathbb{R}\backslash \left\{ {k\dfrac{\pi }{2}\left| {k \in \mathbb{Z}} \right.} \right\}\).               

C. \(D = \mathbb{R}\).

D.  \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{4} + k\dfrac{\pi }{2}\left| {k \in \mathbb{Z}} \right.} \right\}\).

Câu 18: Cho hai hàm số \(f\left( x \right) = \dfrac{1}{{x - 3}} + 3{\sin ^2}x\) và \(g\left( x \right) = \sin \sqrt {1 - x} \). Kết luận nào sau đây đúng về tính chẵn lẻ của hai hàm số này?

A. Hai hàm số \(f\left( x \right);g\left( x \right)\) là hai hàm số lẻ.

B. Hàm số \(f\left( x \right)\) là hàm số chẵn; hàm số \(f\left( x \right)\) là hàm số lẻ.

C. Hàm số \(f\left( x \right)\) là hàm số lẻ; hàm số \(g\left( x \right)\) là hàm số không chẵn không lẻ.

D. Cả hai hàm số \(f\left( x \right);g\left( x \right)\) đều là hàm số không chẵn không lẻ.

Câu 19: Phương trình \(1 + \sin \,x\, - \,cos\,x - \sin 2x = 0\) có bao nhiêu nghiệm trên \(\left[ {0;\,\dfrac{\pi }{2}} \right)\)?

A. 1 .                                       B. 2 .

C. 3 .                                       D. 4.

 

Câu 20: Giải phương trình  \({\cos ^3}x - {\sin ^3}x = \cos 2x\)

A. \(x = k2\pi ,x = \dfrac{\pi }{2} + k2\pi ,x = \dfrac{\pi }{4} + k2\pi \).

B. \(x = k2\pi ,x = \dfrac{\pi }{2} + k2\pi ,x = \dfrac{\pi }{4} + k\pi \).

C. \(x = k\pi ,x = \dfrac{\pi }{2} + k\pi ,x = \dfrac{\pi }{4} + k\pi \).

D. \(x = k2\pi ,x = \dfrac{\pi }{2} + k\pi ,x = \dfrac{\pi }{4} + k\pi \).

II. PHẦN TỰ LUẬN

Câu 21: Giải các phương trình sau

a) \(\sqrt 3 \sin 3x + \cos 3x =  - 1\)

b) \(\cos x\cos 5x = \dfrac{1}{2}\cos 6x\)

Câu 22: Giải phương trình sau:

\(2\sin x(1 + \cos 2x) + \sin 2x = 1 + 2\cos x\)  

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 3 – Đại số và giải tích 11

I. PHẦN TRẮC NGHIỆM

Câu 1: Hàm số \(y = \sin 3x.\cos x\)là một hàm số tuần hoàn có chu kì là

A. \(\pi \)                            B. \(\dfrac{\pi }{4}\)

C. \(\dfrac{\pi }{3}\)                           D. \(\dfrac{\pi }{2}\)

Câu 2: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số \(y = {\sin ^4}x - 2{\cos ^2}x + 1\)

A. M = 2, m = -2          

B. M = 1,  m = 0

C. M = 4, m = -1                    

D. M = 2, m = -1

Câu 3: Tập xác định của hàm số \(y = \sqrt {1 - \cos 2017x} \) là

A. \(D = \mathbb{R}\backslash \left\{ {k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).   

B. \(D = \mathbb{R}\).                        

C. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{4} + k\pi ;\,\dfrac{\pi }{2} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).

D.  \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).

Câu 4: Tìm chu kì T của hàm số \(y = \cot 3x + \tan x\) là

A. \(\pi \)                                 B. \(3\pi \)

C. \(\dfrac{\pi }{3}\)                               D. \(4\pi \)

Câu 5: Cho hàm số \(f\left( x \right) = \left| x \right|sinx.\) Phát biểu nào sau đây là đúng về hàm số đã cho?

A. Hàm số đã cho có tập xác định \(D = \mathbb{R}\backslash \left\{ 0 \right\}.\)            

B. Đồ thị hàm số đã cho có tâm đối xứng.                           

C. Đồ thị hàm số đã cho có trục xứng.                                 

D. Hàm số có tập giá trị là \(\left[ { - 1;\,1} \right].\)

Câu 6: Trong các phương trình sau đây,phương trình nào có tập nghiệm là \(x =  - \dfrac{\pi }{3} + k2\pi \) và \(x = \dfrac{{4\pi }}{3} + k2\pi ,\,\,\,(k \in \mathbb{Z})\)

A. \(\sin \,x = \dfrac{2}{{\sqrt 2 }}\)

B. \(\sin \,x = \dfrac{1}{{\sqrt 2 }}\)

C. \(\sin \,x =  - \dfrac{{\sqrt 3 }}{2}\)

D. \(\sin \,x = \dfrac{{\sqrt 2 }}{{\sqrt 3 }}\)

Câu 7: Phương trình \(\tan \left( {3x - {{15}^0}} \right) = \sqrt 3 \) có các nghiệm là:

A. \(x = {60^0} + k{180^0}\)

B. \(x = {75^0} + k{180^0}\)

C. \(x = {75^0} + k{60^0}\)

D. \(x = {25^0} + k{60^0}\)

Câu 8: Nghiệm âm lớn nhất của phương trình \(\dfrac{{\sqrt 3 }}{{{{\sin }^2}\,x}} = 3\cot \, + \,\sqrt 3 \) là:

A. \( - \dfrac{\pi }{2}\)                               B. \( - \dfrac{{5\pi }}{6}\)

C. \( - \dfrac{\pi }{6}\)                               D. \( - \dfrac{{2\pi }}{3}\)

Câu 9: Phương trình \(sin x + cos x – 1 = 2sin xcos x\) có bao nhiêu nghiệm trên \(\left[ {0;\,2\pi } \right]\) ?

A. 2.                       B. 3.

C. 4.                       D. 6.

Câu 10: Phương trình \(\sin (x + {10^0}) = \dfrac{1}{2}\,\,({0^0} < x < {180^0})\)có nghiệm là:

A. \(x = {30^0}\) và \(x = {150^0}\)

B. \(x = {20^0}\) và \(x = {140^0}\)

C. \(x = {40^0}\) và \(x = {160^0}\)

D. \(x = {30^0}\) và\(\,x = {140^0}\)

Câu 11: Phương trình \(\sin (5x + \dfrac{\pi }{2}) = m - 2\) có nghiệm khi:

A. \(m \in \left[ {1;3} \right]\)

B. \(m \in \left[ { - 1;1} \right]\)

C. \(m \in R\)

D. \(m \in (1;3)\)

Câu 12: Phương trình nào sau đây tương đương với phương trình \(\cos x = 0\)?

A. \({\mathop{\rm s}\nolimits} {\rm{inx}} = 1\)

B. \({\mathop{\rm s}\nolimits} {\rm{inx}} =  - 1\)

C. \({\mathop{\rm t}\nolimits} {\rm{anx}} = 0\)

D. \(\cot x = 0\)

Câu 13: Phương trình \(m\tan x - \sqrt 3  = 0\) Có nghiệm khi

A. \(m \ne 0\).

B. \(m \in R\)

C. \( - 1 \le \dfrac{{\sqrt 3 }}{m} \le 1\)

D. \( - 1 < \dfrac{{\sqrt 3 }}{m} < 1\)

Câu 14: Phương trình \(\sin x + m\cos x = \sqrt {10} \) có nghiệm khi:

A. \(\left[ \begin{array}{l}m \ge 3\\m \le  - 3\end{array} \right.\).

B. \(\left[ \begin{array}{l}m > 3\\m <  - 3\end{array} \right.\).

C. \(\left[ \begin{array}{l}m \ge 3\\m <  - 3\end{array} \right.\).

D. \( - 3 \le m \le 3\).

Câu 15: Phương trình \({\rm{cos}}2x + \sin x = \sqrt 3 \left( {\cos x - \sin 2x} \right)\) có các nghiệm là:

A. \(\left[ \begin{array}{l}x = \dfrac{\pi }{{18}} + k\dfrac{{2\pi }}{3}\\x =  - \dfrac{{3\pi }}{2} - k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

B. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{4} + k\pi \\x =  - \dfrac{\pi }{{12}} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

C. \(\left[ \begin{array}{l}x = \dfrac{\pi }{{12}} + k\pi \\x = \dfrac{\pi }{4} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

D. \(\left[ \begin{array}{l}x = \dfrac{\pi }{{12}} + k2\pi \\x =  - \dfrac{\pi }{4} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

Câu 16: Phương trình \(\sin 5x.\cos 3x = \sin 7x.\cos 5x\) có tập nghiệm là:

A. \(\left[ \begin{array}{l}x = k\dfrac{\pi }{2}\\x = \dfrac{\pi }{{20}} + k\dfrac{\pi }{{10}}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

B. \(\left[ \begin{array}{l}x = k\pi \\x = \dfrac{\pi }{{20}} + k\dfrac{\pi }{{10}}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

C. \(\left[ \begin{array}{l}x = \dfrac{\pi }{2} + k\dfrac{\pi }{{10}}\\x = \dfrac{\pi }{{20}} + k\dfrac{\pi }{{10}}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

D. \(\left[ \begin{array}{l}x = k\dfrac{\pi }{2}\\x = \dfrac{\pi }{{20}} + k\dfrac{\pi }{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

Câu 17: Các giá trị của \(m \in \left[ {a;b} \right]\) để phương trình \(\cos 2x + {\sin ^2}x + 3\cos x - m = 5\) có nghiệm thì:

A. \(a + b = 2\).                               

B. \(a + b = 12\).

C. \(a + b =  - 8\).                            

D. \(a + b = 8\).

Câu 18: Chọn mệnh đề đúng:

A. \(\cos x \ne 1 \Leftrightarrow x \ne \dfrac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)

B. \(\cos x \ne 0 \Leftrightarrow x \ne \dfrac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)

C. \(\cos x \ne  - 1 \Leftrightarrow x \ne  - \dfrac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)

D. \(\cos x \ne 0 \Leftrightarrow x \ne \dfrac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)

Câu 19: Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là:

A. \(k\pi ,k \in \mathbb{Z}\)

B. \(\dfrac{\pi }{4} + \dfrac{{k\pi }}{2},k \in \mathbb{Z}\)

C. \(\dfrac{{k\pi }}{2},k \in \mathbb{Z}\)

D. Vô nghiệm

Câu 20: Nghiệm của phương trình \(\cos 3x = \cos x\) là:

A. \(k2\pi \left( {k \in \mathbb{Z}} \right)\)

B. \(k2\pi ;\dfrac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)

C. \(\dfrac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\)

D. \(k\pi ;\dfrac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)

II. PHẦN TỰ LUẬN

Câu 21: Giải các phương trình sau

\(a)  3{\sin ^2}2x + 7\cos 2x - 3 = 0\)

\(b)  {\sin ^2}2x + c{\rm{o}}{{\rm{s}}^{\rm{2}}}x = 1\)

Câu 22: Giải phương trình sau:

\(\cos 2x + 3\sin 2x + 5\sin x - 3\cos x = 3\)  

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 4 – Đại số và giải tích 11

I. PHẦN TRẮC NGHIỆM

Câu 1: Giải phương trình \({\tan ^2}3x - 1 = 0\).

A. \(x =  \pm \dfrac{\pi }{4} + k\pi \)

B. \(x =  \pm \dfrac{\pi }{{12}} + k\pi \)

C. \(x =  \pm \dfrac{\pi }{8} + k\dfrac{\pi }{2}\)

D. \(x =  \pm \dfrac{\pi }{{12}} + k\dfrac{\pi }{3}\)

Câu 2: Tìm tập xác định \(D\) của hàm số \(y = \dfrac{{1 - 4\sin x}}{{\cos x}}\).

A. \(D = \mathbb{R}\backslash \left\{ {k\pi ,\,\,k \in \mathbb{Z}} \right\}\)

B. \(D = \mathbb{R}\backslash \left\{ {k2\pi ,\,\,k \in \mathbb{Z}} \right\}\)

C. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\)

D. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k2\pi ,\,\,k \in \mathbb{Z}} \right\}\)

Câu 3: Tính giá trị biểu thức \(P = {\sin ^2}{45^0} - \cos {60^0}\).

A. \(P = 0\)                           B. \(P = \dfrac{1}{2}\)

C. \(P = 1\)                           D. \(P =  - 1\)

Câu 4: Giải phương trình \({\mathop{\rm s}\nolimits} {\rm{in2}}x - \cos 2x =  - \sqrt 2 \).

A. \(x =  - \dfrac{\pi }{4} + k2\pi \)

B. \(x = \dfrac{{3\pi }}{8} + k\pi \)

C. \(x =  - \dfrac{\pi }{8} + k\pi \)

D. \(x = \dfrac{\pi }{4} + k\pi \)

Câu 5: Phương trình nào sau đây có nghiệm?

A. \(5\sin x - 2\cos x = 3\)   

B. \(\sin x + \cos x = 2\)       

C. \(\sin x - 4\cos x =  - 5\)  

D. \(\cos x + \sqrt 3 \sin x = 3\)

Câu 6: Tìm giá trị lớn nhất \(M\) của hàm số \(y = 7\cos 5x - 1\).

A. \(M = 7\)                          B. \(M = 5\)

C. \(M = 6\)                          D. M = 8

Câu 7: Phương trình nào sau đây vô nghiệm?

A. \(9 - \cot x = 0\)              

B. \(2\tan x + 9 = 0\)

C. \(1 - 4\sin x = 0\)             

D. \(5 + 4\cos x = 0\)

Câu 8: Giải phương trình \(\sqrt 3 \sin x + \cos x = 1\).

A. \(x = k2\pi ;\,\,x = \dfrac{{2\pi }}{3} + k2\pi \)

B. \(x =  - \dfrac{\pi }{3} + k2\pi ;\,\,x = \dfrac{{4\pi }}{3} + k2\pi \)

C. \(x =  - \dfrac{\pi }{6} + k2\pi ;\,\,x = \dfrac{\pi }{2} + k2\pi \)

D. \(x = \dfrac{\pi }{6} + k2\pi ;\,\,x = \dfrac{{5\pi }}{6} + k2\pi \)

Câu 9: Hàm số nào sau đây là hàm số chẵn.

A. \(y = \sin x\)                     B. \(y = \cos x\)

C. \(y = \cot x\)                     D. \(y = \tan x\)

Câu 10: Giải phương trình \(2{\sin ^2}x - 3\sin x - 2 = 0\).

A. \(x =  - \dfrac{\pi }{3} + k2\pi ;\,\,\,x = \dfrac{{4\pi }}{3} + k2\pi \)

B. \(x = \dfrac{\pi }{6} + k2\pi ;\,\,\,x = \dfrac{{5\pi }}{6} + k2\pi \)

C. \(x =  - \dfrac{\pi }{6} + k2\pi ;\,\,\,x = \dfrac{{7\pi }}{6} + k2\pi \)

D. \(x = \dfrac{\pi }{3} + k2\pi ;\,\,\,x = \dfrac{{2\pi }}{3} + k2\pi \)

Câu 11: Giải phương trình  \(\tan \left( {2x} \right) = \tan {\rm{8}}{0^0}\).

A. \(x = {40^0} + k{180^0}\)

B. \(x = {40^0} + k{90^0}\)

C. \(x = {40^0} + k{45^0}\)

D. \(x = {80^0} + k{180^0}\)

Câu 12: Giải phương trình \(1 + \cos x = 0\).

A. \(x = \dfrac{\pi }{2} + k2\pi \)

B. \(x = \pi  + k2\pi \)

C. \(x = \dfrac{\pi }{2} + k\pi \)

D. \(x = k2\pi \)

Câu 13: Giải phương trình \(\sin 6x - \cos 4x = 0\).

A. \(x = \dfrac{\pi }{{20}} + k\dfrac{\pi }{5};\,x = \dfrac{\pi }{4} + k\pi \)

B. \(x = \dfrac{\pi }{{20}} + k\dfrac{\pi }{5};\,x = \dfrac{\pi }{4} + k\dfrac{\pi }{2}\)

C. \(x = \dfrac{\pi }{4} + k\pi ;\,x = \dfrac{\pi }{{20}} + k\dfrac{{2\pi }}{5}\)

D. \(x = k\pi ;\,x = \dfrac{\pi }{{10}} + k\dfrac{\pi }{5}\)

Câu 14: Giải phương trình \(1 - 2\sin x = 0\).

A. \(\left\{ \begin{array}{l}x = \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\)

B. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right.\)

C. \(\left\{ \begin{array}{l}x =  - \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right.\)

D. \(\left[ \begin{array}{l}x = \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\)

Câu 15: Cho phương trình \(\cos 4x = 3m - 5\). Tìm \(m\) để phương trình đã cho có nghiệm.

A. \( - 1 \le m \le 1\)              B. \(\dfrac{4}{3} \le m \le 2\)

C. \( - 2 \le m \le \dfrac{4}{3}\)         D. \(\dfrac{4}{3} \le m \le 3\)

Câu 16: Cho phương trình \(2\cos 4x - {\rm{sin4}}x = m\) . Tìm tất cả các giá trị của \(m\) để phương trình đã cho có nghiệm.

A. \( - \sqrt 3  \le m \le \sqrt 3 \)

B. \(m \le  - \sqrt 3 ;\,\,m \ge \sqrt 3 \)                         

C. \( - \sqrt 5  \le m \le \sqrt 5 \)

D. \(m \le  - \sqrt 5 ;\,\,m \ge \sqrt 5 \)

Câu 17: Giải phương trình \({\mathop{\rm s}\nolimits} {\rm{in3}}x + \sqrt 3 \cos 3x = 2\sin x\)

A. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{{12}} + k\pi \\x = \dfrac{{5\pi }}{{12}} + k\pi \end{array} \right.\)

B. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{6} + k\pi \\x = \dfrac{\pi }{6} + k\dfrac{\pi }{2}\end{array} \right.\)

C. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{6} + k\pi \\x = \dfrac{\pi }{3} + k\pi \end{array} \right.\)

D. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{{12}} + k\pi \\x = \dfrac{{5\pi }}{{24}} + k\dfrac{\pi }{2}\end{array} \right.\)

Câu 18: Giải phương trình \({\rm{sin3}}x - \sin x = 0\).

A. \(\left[ \begin{array}{l}x = k\pi \\x = \dfrac{\pi }{4} + k\pi \end{array} \right.\)

B. \(\left[ \begin{array}{l}x = k\pi \\x = \dfrac{\pi }{2} + k\pi \end{array} \right.\)

C. \(\left[ \begin{array}{l}x = k\dfrac{\pi }{2}\\x = \dfrac{\pi }{2} + k\pi \end{array} \right.\)

D. \(\left[ \begin{array}{l}x = k\pi \\x = \dfrac{\pi }{4} + k\dfrac{\pi }{2}\end{array} \right.\)

Câu 19: Tìm giá trị nhỏ nhất \(m\) của hàm số \(y = {\sin ^2}x - 4{\cos ^2}x + 9\).

A. \(m = \dfrac{{15}}{2}\)   B. \(m = 5\)

C. \(m =  - \dfrac{5}{2}\)     D. \(m =  - 5\)

Câu 20: Hàm số nào sau đây xác định với mọi \(x \in \mathbb{R}\).

A. \(y = 7 - 4\tan x\)             B. \(y = \dfrac{7}{{{{\sin }^2}x}}\)

C. \(y = \dfrac{{\sin x + 1}}{{3 - \cos x}}\)                  D. \(y = \cot x\)

II. PHẦN TỰ LUẬN

Câu 21: Giải các phương trình sau

\(a) \, \sin 3x = \cos x\)

\(b) \, 2{\sin ^2}x + \sqrt 3 \sin 2x = 2\)

Câu 22: Giải phương trình sau:

\(2\sin x + \cos x - \sin 2x - 1 = 0\)  

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 5 – Đại số và giải tích 11

I. PHẦN TRẮC NGHIỆM

Câu 1: Tập xác định của hàm số \(y = \dfrac{{1 - \sin x}}{{\sin x + 1}}\) là:

A. \(x \ne \dfrac{\pi }{2} + k2\pi \)                             

B. \(x \ne k2\pi \)

C. \(x \ne \dfrac{{3\pi }}{2} + k2\pi \)                        

D. \(x \ne \pi  + k2\pi \)

Câu 2:Hàm số \(y=\sin x\) xác định trên:

A. \(\mathbb R\backslash \left\{ {k\pi ,k \in Z} \right\}\)     

B. \(\mathbb R\)

C. \(\mathbb R\backslash \left\{ {{{k\pi } \over 2},k \in Z} \right\}\)           

D. \([4;3]\)

Câu 3: Cho phương trình: \(\sqrt 3 \cos x + m - 1 = 0\) . Với giá trị nào của m thì phương trình có nghiệm

A. \(m < 1 - \sqrt 3 \)

B. \(m > 1 + \sqrt 3 \)

C. \(1 - \sqrt 3  \le m \le 1 + \sqrt 3 \)

D. \( - \sqrt 3  \le m \le \sqrt 3 \)

Câu 4: Cho biết \(\,x =  \pm \dfrac{{2\pi }}{3} + k2\pi \) là họ nghiệm của phương trình nào sau đây?

A. \(2\cos x - 1 = 0\)            

B. \(2\cos x + 1 = 0\)

C. \(2\sin x + 1 = 0\)            

D. \(2\sin x - \sqrt 3  = 0\)

 Câu 5: Nghiệm của phương trình \(\sin 3x = \cos x\)  là:

A. \(\,x = \dfrac{\pi }{8} + k\dfrac{\pi }{2};\,\,x = \dfrac{\pi }{4} + k\pi \)

B. \(x = k2\pi ;\,\,x = \dfrac{\pi }{2} + k2\pi \)

C. \(x = k\pi ;\,\,x = \dfrac{\pi }{4} + k\pi \)

D. \(x = k\pi ;\,\,x = k\dfrac{\pi }{2}\)

Câu 6: Số nghiệm của phương trình \(2\cos x + \sqrt 2  = 0\) trên khoảng \(\left( { - 6;6} \right)\) là:

A. \(4\)                                  B. \(6\)

C. \(5\)                                  D. \(3\)

Câu 7: Hàm số nào sau đây không phải là hàm số chẵn, cũng không phải là hàm số lẻ.

A. \(y = {x^2} - {\mathop{\rm s}\nolimits} {\rm{in4}}x\)

B. \(y = \dfrac{{\sin x - \cot x}}{x}\)

C. \(y = {x^4} - \cos x\)

D. \(y = {x^2}\tan x\)

Câu 8: Giải phương trình \(\cos 2x - \sqrt 3 \sin x = 1\).

A. \(x = k\pi ;\,\,x =  - \dfrac{\pi }{6} + k2\pi ;\,\,x = \dfrac{{7\pi }}{6} + k2\pi \)

B. \(x = k2\pi ;\,\,x =  - \dfrac{{2\pi }}{3} + k2\pi \)

C. \(x = k\pi ;\,\,x =  - \dfrac{\pi }{3} + k2\pi ;\,\,x = \dfrac{{4\pi }}{3} + k2\pi \)

D. \(x = k\pi ;\,\,x = \dfrac{\pi }{3} + k2\pi ;\,\,x = \dfrac{{2\pi }}{3} + k2\pi \)

Câu 9: Giải phương trình \(\cos 2x + \sin 2x = \sqrt 2 \cos x\) .

A. \(\left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\dfrac{{2\pi }}{3}\\x = \dfrac{{3\pi }}{4} + k2\pi \end{array} \right.\)

B. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{4} + k2\pi \\x =  - \dfrac{\pi }{{12}} + k\dfrac{{2\pi }}{3}\end{array} \right.\)

C. \(\left[ \begin{array}{l}x = \dfrac{\pi }{4} + k2\pi \\x = \dfrac{{4\pi }}{9} + k\dfrac{{2\pi }}{3}\end{array} \right.\)

D. \(\left[ \begin{array}{l}x = \dfrac{\pi }{4} + k2\pi \\x = \dfrac{\pi }{{12}} + k\dfrac{{2\pi }}{3}\end{array} \right.\)

Câu 10: Giải phương trình \(\cos 4x - \sqrt 3 {\mathop{\rm s}\nolimits} {\rm{in4}}x = 0\).

A. \(x = \dfrac{\pi }{{12}} + k\dfrac{\pi }{4}\)

B. \(x = \dfrac{\pi }{8} + k\dfrac{\pi }{4}\)

C. \(x = k\dfrac{\pi }{4}\)

D. \(x = \dfrac{\pi }{{24}} + k\dfrac{\pi }{4}\)

Câu 11: Giải phương trình \({\sin ^2}x - \cos x - 1 = 0\).

A. \(x = k\pi ;\,\,x = \dfrac{\pi }{2} + k2\pi \)

B. \(x = \dfrac{\pi }{2} + k2\pi ;\,\,x =  - \dfrac{\pi }{2} + k2\pi \)

C. \(x = \dfrac{\pi }{2} + k\pi ;\,\,x = \pi  + k2\pi \)

D. \(x = k\pi ;\,\,x =  - \dfrac{\pi }{2} + k2\pi \)

Câu 12: Giải phương trình \(\cos x - \sin x =  - \dfrac{{\sqrt 6 }}{2}\).

A. \(x =  - \dfrac{\pi }{{12}} - k2\pi ;\,\,x = \dfrac{{19\pi }}{{12}} - k2\pi \)

B. \(x = \dfrac{{7\pi }}{{12}} + k2\pi ;\,\,x =  - \dfrac{{13\pi }}{{12}} + k2\pi \)

C. \(x = \dfrac{\pi }{{12}} + k2\pi ;\,\,x = \dfrac{{19\pi }}{{12}} + k2\pi \)

D. \(x =  - \dfrac{{7\pi }}{{12}} - k2\pi ;\,\,x = \dfrac{{13\pi }}{{12}} - k2\pi \)

Câu 13: Mệnh đề nào sau đây sai?

A. Hàm số \(y = \sin x\) tăng trong khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\)

B. Hàm số \(y = \cot x\) giảm trong khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\)

C. Hàm số \(y = \tan x\) tăng trong khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\)

D. Hàm số \(y = \cos x\) tăng trong khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\)

Câu 14: GTNN và GTLN của hàm số \(y = 4\sqrt {\sin x + 3}  - 1\) lần lượt là

A. \(\sqrt 2 ;\,2\)              B. \(2;\,4\)                       

C. \(4\sqrt 2 ;\,\,8\)          D. \(4\sqrt 2  - 1;\,\,7\) 

Câu 15: Nghiệm đặc biệt nào sau đây là sai

A. \(\sin x =  - 1 \Leftrightarrow x = \dfrac{{ - \pi }}{2} + k2\pi \)

B. \(\sin x = 0 \Leftrightarrow x = k\pi \)

C. \(\sin x = 0 \Leftrightarrow x = k2\pi \)

D. \(\sin x = 1 \Leftrightarrow x = \dfrac{\pi }{2} + k2\pi \)

Câu 16: Số nghiệm của phương trình \(\sin 2x = \dfrac{{\sqrt 3 }}{2}\)trong \(\left( {0;3\pi } \right)\)là

A. \(1\)                                     B. \(2\)

C. \(6\)                                     D. \(4\)

Câu 17: Tìm tổng các nghiệm của phương trình \(2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1\) trên \(\left( { - \pi ;\pi } \right)\)

A. \(\dfrac{{2\pi }}{3}\)                      B. \(\dfrac{\pi }{3}\)

C. \(\dfrac{{4\pi }}{3}\)                      D. \(\dfrac{{7\pi }}{3}\)

Câu 18: Để phương trình \({\cos ^2}\left( {\dfrac{x}{2} - \dfrac{\pi }{4}} \right) = m\) có nghiệm ta chọn

A. \(m \le 1\)                            B. \(0 \le m \le 1\)

C. \( - 1 \le m \le 1\)                  D. \(m \ge 0\)

Câu 19: Phương trình \(\sin x + \cos x = 1 - \dfrac{1}{2}\sin 2x\) có nghiệm là:

A. \(x = \dfrac{\pi }{6} + k\dfrac{\pi }{2};\,\,x = k\dfrac{\pi }{4}\)

B. \(x = \dfrac{\pi }{8} + k\pi ;\,\,x = k\dfrac{\pi }{2}\)

C. \(x = \dfrac{\pi }{4} + k\pi ;\,\,x = k\pi \)

D. \(x = k2\pi ;\,\,x = \dfrac{\pi }{2} + k2\pi \)

Câu 20: Giải phương trình \(\dfrac{1}{{\sin 2x}} + \dfrac{1}{{\cos 2x}} = \dfrac{2}{{\sin 4x}}\)

A. \(x = \dfrac{\pi }{4} + k\pi ;\,\,x = k\pi \)

B. \(x = k\pi \)

C. Phương trình vô nghiệm

D. \(x = \dfrac{\pi }{4} + k\pi \)

II. PHẦN TỰ LUẬN

Câu 21: Giải các phương trình sau

\(a) \, 2\sin (x - {30^0}) - 1 = 0\)

\(b) \, 5{\sin ^2}x + 3\cos x + 3 = 0\)

Câu 22: Tìm GTLN, GTNN của hàm số \(y = 3 + \sin 2x\)  

Xem lời giải