Theo định nghĩa xác suất của biến cố ta có:
\(\eqalign{
& a)P(\emptyset ) = {{n(\emptyset )} \over {n(\Omega )}} = {0 \over {n(\Omega )}} = 0 \cr
& P(\Omega ) = {{n(\Omega )} \over {n(\Omega )}} = 1 \cr
& b)\,n(\emptyset ) \le n(A) \le n(\Omega ) \Rightarrow {{n(\emptyset )} \over {n(\Omega )}} \le {{n(A)} \over {n(\Omega )}} \le {{n(\Omega )} \over {n(\Omega )}} \cr
& \Rightarrow P(\emptyset ) \le P(A) \le P(\Omega ) \cr} \)
hay \(0 \le P(A) \le 1\) (từ chứng minh câu a)
c) Nếu A và B xung khắc, ta có:
\(\eqalign{
& n(A \cup B) = n(A) + n(B) \cr
& \Rightarrow {{n(A \cup B)} \over {n(\Omega )}} = {{n(A)} \over {n(\Omega )}} + {{n(B)} \over {n(\Omega )}} \cr
& \Rightarrow P(A \cup B) = P(A) + P(B) \cr} \)