Câu hỏi 3 trang 8 SGK Hình học 12

Giải thích tại sao hình 1.8c không phải là một khối đa diện?

Lời giải

Hình đa diện có tính chất: Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng hai đa giác

Nhưng hình 1.8c có cạnh AB là cạnh chung có 4 đa giác (không thỏa mãn t/c)


Bài Tập và lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 2 - Hình học 7

Đề bài

Bài 1. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Bài 2. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc \( \Rightarrow \widehat {{D_1}} = \) \(\widehat {BIC}\)

Bài 3. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh \(\Delta AHB\) và \(\Delta DHB\) bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 2 - Hình học 7

Đề bài

Bài 1: Cho tam giác ABC vuông tại B có góc \(\widehat {{B_1}} = \widehat {{B_2}}\) \(\widehat A = {60^o}\), kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc \(\widehat {ABH}\).

b) Chứng minh d vuông góc với BH.

c) Hãy so sánh góc \(\widehat {ABH}\) và \(\widehat {CBx}\) (theo hình vẽ).

Bài 2:  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh \(\Delta AMN\) là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  \(\Delta OBC\) cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 2 - Hình học 7

Đề bài

Bài 1. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Bài 2. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh \(\widehat {AFE} = \widehat {ABC} \Rightarrow EF//BC\) \(\Delta ABM = \Delta ACM\).

b) Chứng minh \(AM \bot BC.\)

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh \(\Delta EBC\) và \(\Delta FCB\) bằng nhau.

d) Chứng minh EF // BC.

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 2 - Hình học 7

Đề bài

Bài 1. Cho biết \( \Rightarrow \widehat {{A_1}} + \widehat {BAD} + \widehat {{A_3}} = {90^o}\) \(\Delta ABC = \Delta HIK\), trong đó có \(AC = 5cm\), \(\widehat A = {70^o},\,\widehat C = {50^o}\). Tính HK và số đo góc I của tam giác HIK.

Bài 2. Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Tia phân giác của góc \(\widehat {HAB}\) cắt BC tại E, tia phân giác của góc \(\widehat {HAC}\) cắt BC tại D. Chứng minh rằng \(AB + AC = BC + DE.\)

Bài 3. Cho tam giác ABC có ba góc nhọn, kẻ BD vuông góc với AC (D thuộc AC) và CE vuông góc với AB (E thuộc AB). Trên tia đối của tia BD lấy điểm F sao cho \(BF = AC\). Trên tia đối của tia CE lấy điểm G sao cho \(CG = AB.\)

a) Chứng minh \(\widehat {ABF} = \widehat {ACG}\).

b) Chứng minh \(AF = AG\) và \(AF \bot AG.\)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương 2 - Hình học 7

Đề bài

Bài 1. Bằng tính toán hãy xét xem tam giác sau đây có vuông ahy không, nếu vuông thì vuông tại đỉnh nào? Biết MN = \(\sqrt 3 \,;\,NP = \sqrt 5 ;\,\) và \(MP =\sqrt 2 .\)

Bài 2. Cho tam giác ABC cân tại A có \( \Rightarrow MI = NI\) \(\widehat A = {100^o}\), kẻ Bx vuông góc với AB tại B, Cy vuông góc với AC tại C. Gọi M là giao điểm của Bx và Cy.

a) Tính các góc của tam giác BMC.

b) Chứng minh rằng AM là đường trung trực của BC.

Bài 3. Cho tam giac ABC có \(\widehat A = {40^o}\); AB = AC. Gọi H là trung điểm của BC.

a) Tính \(\widehat {ABC},\,\widehat {ACB}\) và chứng minh AH vuông góc với BC.

b) Trung trực của đoạn AC cắt tia CB ở M. Tính \(\widehat {MAH}\).

c) Trên tia đối của tia MA lấy điểm N sao cho AN = BM. Chứng minh AM = CN.

d) Vẽ CI vuông góc với MN tại I. Chứng minh I là trung điểm của MN.

Xem lời giải