\(I\) và \(K\) lần lượt là trung điểm của các cạnh \(AB\) và \(BC\) \(⇒ IK\) là đường trung bình của \(∆ABC\) nên \(IK//AC \subset \left( {ACF} \right) \Rightarrow IK//\left( {ACF} \right)\)
Hình hộp \(ABCD.EFGH\) nên \((ADHE) // (BCGF)\)
\(⇒ FC // ED\) (là đường chéo trong các hình bình hành \(BCGF\) và \(ADHE)\)
Nên \(ED // (AFC)\).
Ngoài ra \(AF \subset \left( {ACF} \right)\)
⇒ ba vecto \(\overrightarrow {{\rm{AF}}} ;\overrightarrow {IK} ;\overrightarrow {ED} \) đồng phẳng (vì giá của chúng song song với một mặt phẳng, có thể chọn một mặt phẳng bất kì song song với \((ACF)\))