Ta thấy: \(\left( \alpha \right)\) và \(\left( \beta \right)\) cùng có VTPT \(\overrightarrow n = \left( {1;0;0} \right)\).
Dễ thấy điểm \(M\left( {2;0;0} \right) \in \left( \alpha \right)\) nhưng \(M\left( {2;0;0} \right) \notin \left( \beta \right)\) nên \(\left( \alpha \right)//\left( \beta \right)\).
Từ đó \(d\left( {\left( \alpha \right),\left( \beta \right)} \right) = d\left( {M,\left( \beta \right)} \right) = \dfrac{{\left| {2 - 8} \right|}}{{\sqrt {{1^2} + {0^2} + {0^2}} }} = 6\)
Vậy khoảng cách giữa hai mặt phẳng bằng \(6\).