Trong các phương trình sau, phương trình nào là phương trình bậc hai ? Chỉ rõ các hệ số a, b, c của mỗi phương trình ấy:
a) \(x^2 – 4 = 0\)
b) \(x^3+ 4x^2 – 2 = 0\)
c) \(2x^2 + 5x = 5\)
d) \(4x – 5 = 0\)
e) \(-3x^2= 0\)
Giải phương trình \(2x^2 + 5x = 0\) bằng cách đặt nhân tử chung để đưa nó về phương trình tích.
Giải phương trình \({\left( {x - 2} \right)^2} = \dfrac{7}{2}\) bằng cách điền vào các chỗ trống \(\left( {...} \right)\) trong các đẳng thức: \({\left( {x - 2} \right)^2} = \dfrac{7}{2} \Leftrightarrow x - 2 = ... \Leftrightarrow x = ...\)
Vậy phương trình có hai nghiệm là: \({x_1} = ...;{x_2} = ...\)
Giải phương trình \({x^2} - 4x + 4 = \dfrac{7}{2}\)
Giải phương trình \({x^2} - 4x = - \dfrac{1}{2}\).
Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và chỉ rõ các hệ số \(a, b, c\):
a) \(5{x^2} + 2x = 4 - x\)
b) \({3 \over 5}{x^2} + 2x - 7 = 3x + {1 \over 2}\)
c) \(2{x^2} + x - \sqrt 3 = \sqrt 3 x + 1\);
d) \(2{x^2} + {m^2} = 2(m - 1)x\), \(m\) là một hằng số.
Giải các phương trình sau:
a) \({x^2} - 8 = 0\) b) \(5{x^2} - 20 = 0\) ;
c) \(0,4{x^2} + 1 = 0\); d) \(2{x^2} + \sqrt 2 x = 0\);
e) \( - 0.4{x^2} + 1,2x = 0\).
Cho các phương trình:
a) \({x^2} + 8x = - 2\); b)\({x^2} + 2x = \dfrac{1}{3}.\)
Hãy cộng vào hai vế của mỗi phương trình cùng một số thích hợp để được một phương trình mà vế trái thành một bình phương.
Hãy giải phương trình:
\(2{x^2} + 5x + 2 = 0\)
Theo các bước như ví dụ \(3\) trong bài học.
Bài 1: Tìm a, b, c trong mỗi phương trình sau :
a)\({x^2} - 2x = 0\)
b) \(2{x^2} + x - \sqrt 2 = \sqrt 2 x + 1.\)
Bài 2: Giải phương trình :
a)\({x^2} + \sqrt 2 x = 0\)
b) \({x^2} - 6x + 5 = 0.\)
Bài 3: Tìm m để hai phương trình sau có ít nhất một nghiệm chung :
\({x^2} - mx = 0\) (1) và \({x^2} - 4 = 0\) (2).
Bài 1: Tìm a, b, c trong mỗi phương trình sau :
a)\(\left( {x - 2} \right)\left( {x + 3} \right) = 0\)
b) \(\left( {2x - 3} \right)\left( {x + 1} \right) = 0.\)
Bài 2: Cho phương trình : \({x^2} + mx - 35 = 0.\)
a) Tìm m, biết rằng phương trình có một nghiệm \(x = 7.\)
b) Giải phương trình với m vừa tìm được.
Bài 3: Tìm m để phương trình \({x^2} + m = 0\) có nghiệm.
Bài 1: Cho phương trình \({x^2} + px + q = 0.\) Tìm p và q, biết rằng phương trình có hai nghiệm \(x = 3\) và \(x = 4.\)
Bài 2: Giải phương trình : \(\left( {x - 1} \right)\left( {x + 2} \right) + 2 = 0.\)
Bài 3: Tìm tọa độ giao điểm của các đồ thị hai hàm số sau :
\(y = {x^2}\) và \(y = 4x - 3.\)
Bài 1: Tìm m để phương trình sau vô nghiệm : \({x^2} + 2x - m = 0.\)
Bài 2: Giải phương trình : \({x^2} - 5x - 6 = 0.\)
Bài 3: Tìm p, q để hai phương trình sau tương đương:
\({x^2} - 4 = 0\) và \({x^2} + px + q = 0.\)
Bài 1: Cho phương trình \({x^2} + \left( {1 + \sqrt 3 } \right)x + \sqrt 3 = 0\). Số nào sau đây là nghiệm cảu phương trình: \( x = 1; x = − 1;\) \(x = \sqrt 3 \); \(x = - \sqrt 3 .\)
Bài 2: Giải phương trình : \({x^2} - 5x + 7 = 0.\)
Bài 3: Tìm tọa độ giao điểm của đồ thị hai hàm số sau :
\(y = 4{x^2}\) và \(y = 4x + 3.\)