Đề kiểm 15 phút - Đề số 1 - Bài 14 - Chương 1 - Đại số 6

Bài 1. Chứng tỏ số \(11111111\) là hợp số

Bài 2. Chứng tỏ rằng số nguyên tố p, \(p ≥ 5\), khi chia cho 6 có thể dư 1 hoặc 5.

Lời giải

Bài 1. Ta có: \(11111111 = 11000000 + 1100 + 11\) là tổng của bốn số mà mỗi số chia hết cho 11

\(⇒ 11111111\; ⋮\; 11 ⇒ 11111111\) là hợp số

Bài 2. Chia p cho 6, ta được \(p = 6q + r; 0 ≤ r ≤ 5, r ∈\mathbb N\)

+ Nếu \(r = 0 ⇒ p = 6q\) là bội của \(6 ⇒ p\) không phải là số nguyên tố

+ Nếu \(r  = 2 ⇒ p = 6q + 2\) là bội của 2 (hợp số)

+ Nếu \(r = 3, 4\) tương tự, ta có p là hợp số

Vậy \(p = 6q + 1\) hoặc \(p = 6q + 5\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”