Đặt \(\widehat {MOA} = \alpha \)
\( \Rightarrow \widehat {MO'B} = 2\alpha \) ( góc ngoài của \(∆OO’B\))
Gọi \(l_1\) là độ dài cung MA của đường tròn (O), \({l_1} = \dfrac{{\pi .OM.\alpha } }{ {180}}\)
Độ dài cung MB của đường tròn (O’) bán kính \(\dfrac{{OM} }{ 2}\) :
Có \({l_2} = \dfrac{{\pi {{OM} \over 2}.2\alpha } }{ {180}} =\dfrac {{\pi OM\alpha } }{ {180}}\).
Vậy \({l_1} = {l_2}\) (đpcm).