Câu 1: Cho 6 chữ số 2, 3, 4, 5, 6, 7. Số các số tự nhiên chẵn có 3 chữ số được lập từ 6 chữ số trên là:
A. 36 B. 18
C. 256 D. 108
Câu 2: Có bao nhiêu số tự nhiên có 3 chữ số:
A. 900 B. 901
C. 899 D. 999
Câu 3: Cho các chữ số 1, 2, 3, …, 9. Từ các số đó có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau
A. 3024 B. 2102
C. 3211 D. 3452
Câu 4: Từ thành phố A đến thành phố B có 6 con đường, từ thành phố B đến thành phố C có 7 con đường. Có bao nhiêu cách đi từ thành phố A đến thành phố C, biết phải đi qua thành phố B.
A. 46 B. 48
C. 42 D. 44
Câu 5: Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một loại nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn:
A. 25 B. 75
C. 100 D. 15
Câu 6: Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).
A. 7! B. 35831808
C. 12! D. 3991680
Câu 7: Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chẵn:
A. 360 B. 343
C. 523 D. 347
Câu 8: Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số lẻ:
A. 360 B. 343
C. 480 D. 347
Câu 9: Từ các số 2,3,4,5 có thể lập được bao nhiêu số gồm 4 chữ số:
A. 256 B. 120
C. 24 D.16
Câu 10: Cho tập \(A = \left\{ {1,2,3,4,5,6,7,8} \right\}\). Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao cho các số này lẻ và không chia hết cho 5:
A. 15120 B. 23523
C. 16862 D. 23145
Câu 1: Cho các số 1,5,6,7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số khác nhau:
A. 12 B. 24
C. 64 D.256
Câu 2: Có bao nhiêu số tự nhiên chẵn gồm 4 chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8
A. 252 B. 420
C.480 D. 368
Câu 3: Cho các chữ số 1, 2, 3, …, 9. Từ các chữ số đó có thể lập được bao nhiêu số chẵn gồm 4 chữ số đôi một khác nhau và không vượt quá 2011
A. 168 B. 170
C.164 D. 172
Câu 4: Từ các số 1,3,5 có thể lập được bao nhiêu số tự nhiên có 3 chữ số:
A. 6 B. 8
C. 12 D. 27
Câu 5: Có bao nhiêu số tự nhiên có 2 chữ số mà tất cả các chữ số đều lẻ:
A. 25 B. 20
C. 30 D.10
Câu 6: Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chia hết cho 5:
A. 360 B. 120
C. 480 D. 347
Câu 7: Bạn muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, các cây bút chì cũng có 8 màu khác nhau. Như vậy bạn có bao nhiêu cách chọn:
A. 64 B. 16
C. 32 D. 20
Câu 8: Hội đồng quản trị của công ty X gồm 10 người. Hỏi có bao nhiêu cách bầu ra 3 người vào ba vị trí chủ tịch, phó chủ tịch và thư kí, biết khả năng mỗi người là như nhau.
A. 728 B. 723
C. 720 D. 722
Câu 9: Trong một lớp có \(17\) bạn nam và \(11\) bạn nữ. Hỏi có bao nhiêu cách chọn ra một bạn làm lớp trưởng?
A. 17 B. 11
C. 1 D. 28
Câu 10: Một đội văn nghệ đã chuẩn bị \(3\) bài múa, \(4\) bài hát và \(2\) vở kịch. Thầy giáo yêu cầu đội chọn biểu diễn một vở kịch hoặc một bài hát. Số cách chọn bài biểu diễn của đội là:
A. 4 B. 9
C. 6 D. 7
Câu 1: Từ các số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3?
A. 192 B. 202
C. 211 D. 180
Câu 2: Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào một bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách sắp xếp để 3 học sinh nữ ngồi kề nhau?
A. 34 B.46
C. 36 D.26
Câu 3: Có bao nhiêu cách xếp n người ngồi vào một bàn tròn?
A. n! B. (n-1)!
C. 2(n-1)! D. (n-2)!
Câu 4: Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
A. \(C_7^3\) B. \(A_7^3\)
C. \(\dfrac{{7!}}{{3!}}\) D. 7
Câu 5: Cho 6 số 4,5,6,7,8,9. Số các số tự nhiên chẵn có 3 chữ số khác nhau được lập từ 6 chữ số trên:
A.120 B. 60
C. 256 D. 216
Câu 6: Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (thăm một bạn không quá một lần).
A. 3991680 B. 12!
C. 35831808 D. 7!
Câu 7: Một liên đoàn bóng rổ có 10 đội, mỗi đội đấu với mỗi đội khác hai lần, một lần ở sân nhà và một lần ở sân khách. Số trận đấu được sắp xếp là:
A. 45 B. 90
C. 100 D. 180
Câu 8: Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Chọn tên 4 học sinh để cho đi du lịch. Hỏi có bao nhiêu cách chọn các học sinh:
A. 4! B. 15!
C. 1365 D. 32760
Câu 9: Một hội đồng gồm 2 giáo viên và 3 học sinh được chọn từ một nhóm 5 giáo viên và 6 học sinh. Hỏi có bao nhiêu cách chọn:
A. 200 B. 150
C. 160 D. 180
Câu 10: Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người.
A. 11 B. 12
C. 33 D. 66
Câu 1: Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?
A. 5!.7! B. 2.5!.7!
C. 5!.8! D. 12!
Câu 2: Nếu \(2A_n^4 = 3A_{n - 1}^4\)thì n bằng:
A. n = 11 B. n = 12
C. n = 13 D. n = 14
Câu 3: Cho 2 đường thẳng song song \({d_1},\,{d_2}\). Trên đường thẳng \({d_1}\)lấy 10 điểm phân biệt, trên \({d_2}\) lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 25 điểm vừa nói trên:
A. \(C_{10}^2C_{15}^1\)
B. \(C_{10}^1C_{15}^2\)
C. \(C_{10}^2C_{15}^1 + C_{10}^1C_{15}^2\)
D. \(C_{10}^2C_{15}^1.C_{10}^1C_{15}^2\)
Câu 4: Giả sử ta dung 5 màu để tô cho 3 nước khác nhau trên bản đồ và không có màu nào được dùng 2 lần. Số các cách để chọn những màu cần dùng là:
A. \(\dfrac{{5!}}{{2!}}\) B. 8
C. \(\dfrac{{5!}}{{3!2!}}\) D. \({5^3}\)
Câu 5: Mười hai đường thẳng có nhiều nhất bao nhiêu giao điểm:
A. 12 B. 66
C. 132 D. 144
Câu 6: Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2,3,5 học sinh là:
A. \(C_{10}^2 + C_{10}^3 + C_{10}^5\)
B. \(C_{10}^2.C_8^3.C_5^5\)
C. \(C_{10}^2 + C_8^3 + C_5^5\)
D. \(C_{10}^5 + C_5^3 + C_2^2\)
Câu 7: Từ các số 0,1,2,7,8,9 tạo được bao nhiêu số chẵn có 5 chữ số khác nhau?
A. 120 B. 216
C. 312 D. 360
Câu 8: Có bao nhiêu tam giác mà ba đỉnh của nó thuộc vào 2010 điểm đã cho
A. 141427544
B. 1284761260
C. 1351414120
D. 453358292
Câu 9: Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0,1,2,3,4,5
A. 60 B. 80
C. 240 D. 600
Câu 10: Một tổ gồm 12 học sinh trong đó có bạn An. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có An:
A. 990 B. 495
C. 220 D. 165
Câu 1: Một thí sinh phải chon 10 trong số 20 câu hỏi. Hỏi có bao nhiêu cách chon 10 câu hỏi này nếu 3 câu đầu phải được chọn:
A. \(C_{20}^{10}\) B. \(C_7^{10} + C_{10}^3\)
C. \(C_{10}^7.C_{10}^3\) D. \(C_{17}^7\)
Câu 2: Giá trị của \(n \in \mathbb{N}\) thỏa mãn đẳng thức \(C_n^6 + 3C_n^7 + 3C_n^8 + C_n^9 = 2C_{n + 2}^8\) là:
A. n = 18 B. n = 16
C. n = 15 D. n = 14
Câu 3: Trong các câu sau câu nào sai:
A. \(C_{14}^3 = C_{14}^{11}\)
B. \(C_{10}^3 + C_{10}^4 = C_{11}^4\)
C. \(C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4 = 16\)
D. \(C_{10}^4 + C_{11}^4 = C_{11}^5\)
Câu 4: Nếu \(A_x^2 = 110\) thì
A. x =10
B. x = 11
C. x = 11 hay x = 10
D. x = 0
Câu 5: Trong mặt phẳng cho 2010 điểm phân biệt sao cho3 điểm bất kỳ không thẳng hàng. Hỏi có bao nhiêu véc tơ khác véc tơ – không có điểm đầu và điểm cuối thuộc 2010 điểm đã cho.
A. 4039127 B. 4038090
C. 4167114 D. 167541284
Câu 6: Cho biết \(C_n^{n - k} = 28\). Giá trị của n và k lần lượt là:
A. 8 và 4
B. 8 và 3
C. 8 và 2
D. Không thể tìm được
Câu 7: Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là:
A. 11 B. 10
C. 9 D. 8
Câu 8: Nghiệm của phương trình \(A_n^3 = 20n\) là :
A. n = 6 B. n = 5
C. n = 8 D. Không tồn tại
Câu 9: Cho đa giác đều n đỉnh, \(n \in \mathbb{N}\)và \(n \ge 3\). Tìm n biết rằng đa giác đã cho có 135 đường chéo
A. n = 15 B. n = 27
C. n = 8 D. n = 18
Câu 10: Giải bất phương trình ( ẩn n thuộc tập tự nhiên ) \(\dfrac{{C_{n + 1}^2}}{{C_n^2}} \ge \dfrac{3}{{10}}n\)
A. \(2 \le n < 4\)
B. \(0 \le n \le 2\)
C. \(1 \le n \le 5\)
D. \( - {2 \over 3} \le n \le 5\)
Câu 1: Từ một nhóm 5 người, chọn ra các nhóm ít nhất 2 người. Hỏi có bao nhiêu cách chọn:
A. 25 B. 26
C. 31 D. 32
Câu 2: Cho \(C_n^{n - 3} = 1140\). Tính \(A = \,\dfrac{{A_n^6 + A_n^5}}{{A_n^4}}\)
A. 256 B. 342
C. 231 D. 129
Câu 3: Trong một hộp bánh có 6 loại bánh nhân thịt và 4 loại bánh nhân đậu xanh. Có bao nhiêu cách lấy ra 6 bánh để phát cho các em thiếu nhi.
A. 240 B. 151200
C. 14200 D. 210
Câu 4: Nếu \(2A_n^4 = 3A_{n - 1}^4\) thì n bằng
A. n = 11 B. n = 12
C. n = 13 D. n = 14
Câu 5: Đội tuyển học sinh giỏi của một trường gồm 18 em, trong đó có 7 học sinh khối 12, 6 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách cử 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn
A. 40551 B. 42802
C. 41822 D. 32023
Câu 6: Cho 2 đường thẳng d1 và d2 song song với nhau. Trên d1 có 10 điểm phân biệt, trên d2 có n điểm phân biệt \((n \ge 2)\). Biết có 2800 tam giác có đỉnh là các điểm nói trên. Tìm n?
A. 20 B. 21
C. 30 D. 32
Câu 7: Tìm \(x \in \mathbb{N}\), biết \(C_x^0 + C_x^{x - 1} + C_x^{x - 2} = 79\)
A. \(x = 13\) B. \(x = 17\)
C. \(x = 16\) D. \(x = 12\)
Câu 8: Tìm \(n\) biết \(C_n^0 + 2C_n^1 + 4C_n^2 + ... + {2^n}C_n^n = 243\)
A. \(n = 4\) B. \(n = 5\)
C. \(n = 6\) D. \(n = 7\)
Câu 9: Có 8 quả cân lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu nhiên 3 quả cân trong 8 quả cân đó. Tính xác suất để trọng lượng 3 quả cân được chọn không vượt quá 9kg.
A. \({1 \over {15}}\) B. \({1 \over 7}\)
C. \({1 \over {28}}\) D. \({1 \over 8}\)
Câu 10: Giải phương trình sau \(24(A_{x + 1}^3 - C_x^{x - 4}) = 23A_x^4\)
A. 3 B. 4
C. 5 D. 6
Câu 1: Trong khai triển \({(2a - b)^5}\), hệ số của số hạng thứ 3 bằng:
A. -80 B. 80
C. -10 D. 10
Câu 2: Một đội văn nghệ có 15 người gồm 10 nam và 5 nữ. Hỏi có bao nhiêu cách lập một nhóm đồng ca gồm 8 người biết rằng nhóm đó có ít nhất 3 nữ.
A. 3690 B. 3120
C. 3400 D. 3143
Câu 3: Trong khai triển nhị thức \({(a + 2)^{n + 6}},n \in \mathbb{N}\), có tất cả 17 số hạng. Vậy n bằng
A. 17 B. 11
C. 10 D. 12
Câu 4: Trong khai triển \({(2x - 5y)^8}\), hệ số của số hạng chứa \({x^5}.{y^3}\)là:
A. -22400 B. -40000
C. -8960 D. -4000
Câu 5: Trong khai triển \({(x + \dfrac{8}{{{x^2}}})^9}\),số hạng không chứa \(x\) là
A. 4308 B. 86016
C. 84 D. 43008
Câu 6: Cho tập \(A = \left\{ {0,1,2,3,4,5,6} \right\}.\)Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau và chia hết cho 5
A. 660 B. 432
C. 679 D. 523
Câu 7: Hệ số của \({x^3}{y^3}\) trong khai triển \({(1 + x)^6}{(1 + y)^6}\) là:
A. 20 B. 800
C. 36 D. 400
Câu 8: Số hạng chính giữa trong khai triển \({(3x + 2y)^4}\) là:
A. \(C_4^2{x^2}{y^2}\)
B. \({(3x)^2}{(2y)^2}\)
C. \(6C_4^2{x^2}{y^2}\)
D. \(36C_4^2{x^2}{y^2}\)
Câu 9: Tìm hệ số của số hạng chứa \({x^{26}}\)trong khai triển nhị thức Newton của \({\left( {\dfrac{1}{{{x^4}}} + {x^7}} \right)^n}\), biết \(C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n = {2^{20}} - 1\)
A. 210 B. 213
C. 414 D. 213
Câu 10: Tổng \(T = C_n^0 + C_n^1 + C_n^2 + C_n^3 + ... + C_n^n\) bằng
A. \(T = {2^n}\)
B. \(T = {2^n} - 1\)
C. \(T = {2^n} + 1\)
D. \(T = {4^n}\)
Câu 1: Trong các thí nghiệm sau, thí nghiệm nào không phải là phép thử ngẫu nhiên:
A. Gieo đồng tiền xem nó mặt ngửa hay mặt sấp
B. Gieo 3 đồng tiền và xem có mấy đồng tiền lật ngửa
C. Chọn bất kì 1 học sinh trong lớp và xem là nam hay nữ
D. Bỏ 2 viên bi xanh và 3 viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi
Câu 2: Cho A là một biến cố liên quan đến phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?
A. \(P(A)\) là số lớn hơn 0
B. \(P(A) = 1 - P\left( {\overline A } \right)\)
C. \(P(A) = 0 \Leftrightarrow A = \Omega \)
D. \(P(A)\)là số nhỏ hơn 1
Câu 3: Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là:
A. \(\dfrac{{31}}{{32}}\) B. \(\dfrac{{21}}{{32}}\)
C. \(\dfrac{{11}}{{32}}\) D. \(\dfrac{1}{{32}}\)
Câu 4: Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A: “Kết quả của 3 lần gieo là như nhau”
A. \(P(A) = \dfrac{1}{2}\)
B. \(P(A) = \dfrac{3}{8}\)
C. \(P(A) = \dfrac{7}{8}\)
D. \(P(A) = \dfrac{1}{4}\)
Câu 5: Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là:
A. 24 B. 12
C. 6 D. 8
Câu 6: Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen. Lấy ngẫu nhiên đồng thời bốn quả. Tính xác suất sao cho có ít nhất một quả cầu trắng?
A. \(\dfrac{1}{{21}}\)
B. \(\dfrac{1}{{210}}\)
C. \(\dfrac{{209}}{{210}}\)
D. \(\dfrac{8}{{105}}\)
Câu 7: Một hộp có 5 viên bi đỏ và 9 viên bi xanh. Chọn ngẫu nhiên 2 viên bi. Xác suất để chọn được 2 viên bi khác màu là:
A. \(\dfrac{{14}}{{45}}\)
B. \(\dfrac{{45}}{{91}}\)
C. \(\dfrac{{46}}{{91}}\)
D. \(\dfrac{{15}}{{22}}\)
Câu 8: Một tổ có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có đúng một người nữ.
A. \(\dfrac{1}{{15}}\)
B. \(\dfrac{2}{{15}}\)
C. \(\dfrac{7}{{15}}\)
D. \(\dfrac{8}{{15}}\)
Câu 9: Chọn ngẫu nhiên một số có 2 chữ số từ các số 00 đến 99. Xác suất để có một con số tận cùng là 0 là:
A. 0,1 B. 0,2
C. 0,3 D. 0,4
Câu 10: Cả 2 xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng bia là 0,8; người thứ hai bắn trúng bia là 0,7. Hãy tính xác suất để cả hai người cùng bắn trúng
A. 0,56 B. 0,6
C. 0,5 D. 0,326
Câu 1: Cho phép thử có không gian mẫu \(\Omega = \left\{ {1,2,3,4,5,6} \right\}\). Các cặp biến cố không đối nhau là
A. \(A = \left\{ 1 \right\};\,\,\,B = \left\{ {2,3,4,5,6} \right\}\)
B. \(C = \left\{ {1,4,5} \right\};\,\,\,B = \left\{ {2,3,6} \right\}\)
C. \(E = \left\{ {1,4,6} \right\};\,\,\,F = \left\{ {2,3} \right\}\)
D. \(\Omega ;\,\,\emptyset \)
Câu 2: Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau. Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7. Hãy tính xác suất để cả 2 động cơ chạy tốt
A. 0,56 B. 0,55
C. 0,58 D. 0,50
Câu 3: Một hộp đựng 4 bi xanh và 6 bi đỏ, lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và một bi đỏ là:
A. \(\dfrac{4}{{15}}\)
B. \(\dfrac{6}{{25}}\)
C. \(\dfrac{8}{{25}}\)
D. \(\dfrac{8}{{15}}\)
Câu 4: Gieo 2 con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện trên hai mặt của 2 con súc sắc đó không vượt quá 5 là:
A. \(\dfrac{2}{3}\)
B. \(\dfrac{5}{{18}}\)
C. \(\dfrac{8}{9}\)
D. \(\dfrac{7}{{18}}\)
Câu 5: Một bình chứa 16 viên bi với 7 viên bi trắng, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi không có viên nào đỏ.
A. \(\dfrac{{1}}{{16}}\)
B. \(\dfrac{9}{{40}}\)
C. \(\dfrac{1}{{28}}\)
D. \(\dfrac{1}{{560}}\)
Câu 6: Có 5 nam, 5 nữ xếp thành một hàng dọc. Tính xác suất để nam, nữ đứng cạnh nhau:
A. \(\dfrac{1}{{125}}\)
B. \(\dfrac{1}{{126}}\)
C. \(\dfrac{1}{{36}}\)
D. \(\dfrac{{13}}{{36}}\)
Câu 7: Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
A. 2 B. 3
C. 4 D. 5
Câu 8: Trên giá sách có 4 quyển sách Toán, 3 quyển sách Lý, 2 quyển sách Hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển sách lấy ra đều là môn Toán
A. \(\dfrac{2}{7}\) B. \(\dfrac{1}{{21}}\)
C. \(\dfrac{{37}}{{42}}\) D. \(\dfrac{5}{{42}}\)
Câu 9: Một lớp có 20 học sinh nam và 18 học sinh nữ. Chọn ngẫu nhiên một học sinh. Tính xác suất chọn được một học sinh nữ
A. \(\dfrac{9}{{19}}\) B. \(\dfrac{{10}}{{19}}\)
C. \(\dfrac{1}{{38}}\) D. \(\dfrac{{19}}{9}\)
Câu 10: Sắp xếp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 2 quyển sách cùng một môn nằm cạnh nhau:
A. \(\dfrac{1}{5}\) B. \(\dfrac{9}{{10}}\)
C. \(\dfrac{1}{{20}}\) D. \(\dfrac{2}{5}\)