Câu 1: Cho một cấp số cộng có \({u_1} = - 3;{u_6} = 27\). Tìm \(d\)?
A. \(d = 5\) B. \(d = 7\)
C. \(d = 6\) D. \(d = 8\)
Câu 2: Khẳng định nào sau đây là sai?
A. Dãy số \(\dfrac{{ - 1}}{2};0;\dfrac{1}{2};1;\dfrac{3}{2};...\)là một cấp số cộng: \(\left\{ \begin{array}{l}{u_1} = \dfrac{{ - 1}}{2}\\d = \dfrac{1}{2}\end{array} \right.\)
B. Dãy số \(\dfrac{1}{2};\dfrac{1}{{{2^2}}};\dfrac{1}{{{2^3}}};...\) là một cấp số cộng: \(\left\{ \begin{array}{l}{u_1} = \dfrac{1}{2}\\d = \dfrac{1}{2};n = 3\end{array} \right.\)
C. Dãy số \( - 2; - 2; - 2; - 2;...\) là một cấp số cộng: \(\left\{ \begin{array}{l}{u_1} = - 2\\d = 0\end{array} \right.\)
D. Dãy số \(0,1;\,\,\,0,01;\,\,\,0,001;\,\,\,0,0001;...\) không phải là một cấp số cộng.
Câu 3: Cho cấp số cộng \(({u_n})\) có : \({u_1} = - 0,1;\,d = 0,1\). Số hạng thứ 7 của cấp số cộng này là
A. 1,6 B. 6
C. 0,5 D. 0,6
Câu 4: Xác định x để 3 số : \(1 - x;{x^2};1 + x\) theo thứ tự lập thành một cấp số cộng ?
A. Không có giá trị nào của x C. \(x = \pm 1\)
B. \(x = \pm 2\) D. \(x = 0\)
Câu 5: Cho cấp số cộng \(({u_n})\)có \({u_1} = - 0,1;\,d = 1\). Khẳng định nào sau đây là đúng:
A. Số hạng thứ 7 của cấp số cộng này là: 0,6
B. Số hạng thứ 6 của cấp số cộng này là:0,5
C. Cấp số cộng này không có hai số 0,5 và 0,6
D. Số hạng thứ 4 của cấp số cộng này là: 3,9
Câu 6: Tìm bốn số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng 20 và tổng các bình phương của chúng bằng 120.
A. 1, 5, 6, 8 B. 2,4,6,8
C. 1,4,6,9 D. 1,4,7,8
Câu 7: Cho cấp số cộng \(({u_n})\) thỏa mãn \(\left\{ \begin{array}{l}{u_2} - {u_3} + {u_5} = 10\\{u_4} + {u_6} = 26\end{array} \right.\). Tính \(S = {u_1} + {u_4} + {u_7} + ... + {u_{2011}}\)
A. S = 673015 B. S = 6734134
C. S = 673044 D. S = 2023736
Câu 8: Cho dãy số \(({u_n})\) có d = -2, \({S_8} = 72\). Tính \({u_1}\)
A. \({u_1} = 16\) B. \({u_1} = - 16\)
C. \({u_1} = \dfrac{1}{{16}}\) D. \({u_1} = - \dfrac{1}{{16}}\)
Câu 9: Cho dãy số \(({u_n})\) có \({u_1} = - 1,d = 2,{S_n} = 483\). Tính số các số hạng của cấp số cộng?
n = 20 B. n = 21
C. n = 22 D. n = 23
Câu 10: Cho một cấp số cộng \(({u_n})\) có \({u_1} = 1\) và tổng 100 số hạng đầu bằng 24850. Tính
\(S = \dfrac{1}{{{u_1}{u_2}}} + \dfrac{1}{{{u_2}{u_3}}} + ... + \dfrac{1}{{{u_{49}}{u_{50}}}}\)
A. \(S = \dfrac{9}{{246}}\) B. \(S = \dfrac{4}{{23}}\) C. S = 123 D. \(S = \dfrac{{49}}{{246}}\)