Đề kiểm tra 15 phút - Chương 1 - Hình học 10

Bài Tập và lời giải

Đề kiểm tra 15 phút - Chương 1 - Đề số 1 - Hình học 10

Câu 1. Cho tam giác ABC vuông tại A có trọng tâm là G. Biết rằng AB=6 và AC=8. Tính độ dài của các véc tơ \(\overrightarrow {GB}  - \overrightarrow {GC} \) và \(\overrightarrow {GB}  + \overrightarrow {GC} \).

Câu 2. Cho hai hình bình hành ABCD và AMNP có chung đỉnh A. Chứng minh rằng \(\overrightarrow {BM}  + \overrightarrow {DP}  = \overrightarrow {CN} \).

Câu 3. Cho hình bình hành ABCD tâm O. Gọi G là trọng tâm tam giác OCD. Hãy biểu thị \(\overrightarrow {BG} \) theo các véc tơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).

Xem lời giải

Đề kiểm tra 15 phút - Chương 1 - Đề số 2 - Hình học 10

Chọn phương án đúng

Câu 1. Cho tam giác ABC với M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. Véc tơ đối của véc tơ \(\overrightarrow {MN} \)là

A.\(\overrightarrow {BP} \)                          

B.\(\overrightarrow {MA} \)                          

C.\(\overrightarrow {PC} \)                       

D.\(\overrightarrow {PB} \)

Câu 2. Cho ba điểm A, B, C phân biệt. Đẳng thức nào sau đây là sai ?

A.\(\overrightarrow {AB}  - \overrightarrow {BC}  = \overrightarrow {AC} \)          

B.\(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

C.\(\overrightarrow {BC}  + \overrightarrow {AB}  = \overrightarrow {AC} \)

D.\(\overrightarrow {BC}  - \overrightarrow {BA}  = \overrightarrow {AC} \)

Câu 3. Cho hình bình hành ABCD có tâm O. Khi đó ta có

A.\(\overrightarrow {AO}  - \overrightarrow {BO}  = \overrightarrow {BA} \) 

B.\(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {BA} \)

C.\(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {AB} \)

D.\(\overrightarrow {AO}  + \overrightarrow {BO}  = \overrightarrow {AB} \)

Câu 4. Cho hình vuông ABCD. Khi đó ta có

A.\(\overrightarrow {AB}  =  - \overrightarrow {BC} \)            

B.\(\overrightarrow {AD}  =  - \overrightarrow {BC} \)                

C.\(\overrightarrow {AC}  =  - \overrightarrow {BD} \)            

D.\(\overrightarrow {AD}  =  - \overrightarrow {CB} \)

Câu 5. Cho hai điểm phân biệt M, N. Điều kiện cần và đủ để P là trung điểm của đoạn MN là

A\(\overrightarrow {PM}  =  - \overrightarrow {PN} \)            

B.\( PM=PN\)                       

C.\(\overrightarrow {PM}  = \overrightarrow {PN} \)               

D.\(\overrightarrow {MP}  = \overrightarrow {NP} \)

Câu 6. Cho G là trọng tâm của tam giác ABC và M là trung điểm của đoạn BC. Đẳng thức nào sau đây sai ?

A.\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

B.\(\overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM} \)

C.\(\overrightarrow {GB}  + \overrightarrow {GC}  = 2\overrightarrow {GM} \)

D.\(\overrightarrow {BM}  + \overrightarrow {MC}  = \overrightarrow 0 \)

Câu 7. Gọi I là giao điểm của hai đường chéo của hình bình hành ABCD. Khi đó

A.\(\overrightarrow {AI}  = \dfrac{1 }{ 2}\overrightarrow {AB}  + \dfrac{1 }{ 2}\overrightarrow {AC} \)

B.\(\overrightarrow {AI}  = \dfrac{1 }{3}\overrightarrow {AB}  + \dfrac{1 }{3}\overrightarrow {AD} \)

C.\(\overrightarrow {AI}  = \dfrac{1 }{2}\overrightarrow {AB}  + \dfrac{1 }{ 2}\overrightarrow {AD} \)

D.\(\overrightarrow {AI}  = \dfrac{1 }{ 2}\overrightarrow {AB}  + \overrightarrow {BI} \)

Câu 8. Cho tam giác ABC. Gọi M là điểm trên đoạn BC sao cho MB = 2MC.

Khi đó

A.\(\overrightarrow {AM}  = dfrac{1 }{ 3}\overrightarrow {AB}  + \overrightarrow {AC} \)

B.\(\overrightarrow {AM}  = \dfrac{1 }{3}\overrightarrow {AB}  + \dfrac{2 }{ 3}\overrightarrow {AC} \)

C.\(\overrightarrow {AM}  = \dfrac{1 }{3}\overrightarrow {AB}  + \dfrac{1 }{ 3}\overrightarrow {AC} \)

D.\(\overrightarrow {AM}  = \dfrac{1 }{3}\overrightarrow {AB}  + 2\overrightarrow {AC} \)

Câu 9. Cho tam giác đều ABC có cạnh bằng a, M là trung điểm của BC. Véc tơ \(\overrightarrow {CA}  - \overrightarrow {MC} \) có độ lớn là

A.\(\dfrac{{3a}}{2}\)

B. \(\dfrac{a}{2}\)

C. \(\dfrac{{2a\sqrt 3 }}{3}\)

D. \(\dfrac{{a\sqrt 7 }}{2}\)

Câu 10. Cho tam giác ABC vuông tại B có AB = 3cm, BC = 4cm. Độ dài của véctơ tổng \(\overrightarrow {AB}  + \overrightarrow {AC} \) là

A.\(\sqrt {13} \)cm   

B. \(13\) cm                      

C. \(2\sqrt {13} \) cm 

D. \(26\) cm

Xem lời giải

Đề kiểm tra 15 phút - Chương 1 - Đề số 3 - Hình học 10

Câu 1. Cho tam giác ABC vuông tại B có trọng tâm là G. Biết rằng \(AB = 3\) và \(AC = 5\). Tính độ dài của các véctơ \(\overrightarrow {GB}  - \overrightarrow {GC} \) và \(\overrightarrow {GB}  + \overrightarrow {GC} \).

Câu 2. Cho tam giác ABC có trọng tâm G. Gọi E và F là các điểm xác định bởi \(\overrightarrow {AE}  = 2\overrightarrow {AB} \) và \(\overrightarrow {AF}  = \dfrac{2 }{ 5}\overrightarrow {AC} \)

a.Hãy biểu diễn các véctơ \(\overrightarrow {GE} \) và \(\overrightarrow {GF} \)theo các véctơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).

b.Chứng minh ba điểm G, E, F thẳng hàng.

Câu 3. Cho tam giác ABC và một đường thẳng \(\Delta \). Tìm trên \(\Delta \) điểm M sao cho véctơ \(2\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} \)có độ dài ngắn nhất.

Xem lời giải

Đề kiểm tra 15 phút - Chương 1 - Đề số 4 - Hình học 10

Chọn phương án đúng

Câu 1. Cho tam giác đều ABC có cạnh bằng a. Độ dài của véctơ \(\overrightarrow {BA}  + \overrightarrow {BC} \) là

A.2a                         

B.\({{a\sqrt 3 } \over 2}\)                            

C.a                           

D.\(a\sqrt 3 \)

Câu 2. Cho tam giác ABC vuông tại A có AB=6, AC=8. Độ dài của véctơ \(\overrightarrow {BA}  + \overrightarrow {BC} \) là

A.\(2\sqrt 3 \)                      

B.10                                

C.\(4\sqrt {13} \)                    

D.16

Câu 3. Cho tam giác đều ABC có cạnh bằng 3. Gọi I là trung điểm của BC. Độ dài véctơ \(\overrightarrow {CA}  - \overrightarrow {IC} \) là

A.\(\dfrac{3 }{ 2}\)                          

B. \(\dfrac{3\sqrt 7 } {2}\)                         

C.\(2\sqrt 3 \)                      

D.\(\dfrac{9 }{ 2}\)

Câu 4. Cho tam giác ABC vuông tại A có BC = 15. Gọi G là trọng tâm. Độ dài của véctơ \(\overrightarrow {GB}  + \overrightarrow {GC} \) là

A.10                          B.5

C.15                          D.20

Câu 5. Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AB, CD. Tìm mệnh đề sai

A.\(\overrightarrow {AB}  + \overrightarrow {CD}  = 2\overrightarrow {MN} \)

B. \(\overrightarrow {AC}  + \overrightarrow {DB}  = 2\overrightarrow {MN} \)

C.\(\overrightarrow {AD}  + \overrightarrow {BC}  = 2\overrightarrow {MN} \) 

D. \(\overrightarrow {CA}  - \overrightarrow {BD}  = 2\overrightarrow {NM} \)

Câu 6. Cho lục giác ABCDEF. Tìm mệnh đề đúng

A.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CD} \)

B.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AE}  + \overrightarrow {BF}  + \overrightarrow {CE} \)

C.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AD}  + \overrightarrow {BF}  + \overrightarrow {CF} \)

D.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CE} \)

Câu 7. Cho tam giác OAB. Gọi M, N lần lượt là trung điểm OA, OB . Tìm mệnh đề đúng

A.\(\overrightarrow {MN}  = \dfrac{1 }{ 2}\overrightarrow {OA}  + \dfrac{1 }{ 2}\overrightarrow {OB} \)

B. \(\overrightarrow {MN}  = \dfrac{1}{2}\overrightarrow {OB}  - \dfrac{1 }{ 2}\overrightarrow {OA} \)

C. \(\overrightarrow {MN}  = \dfrac{1}{2}\overrightarrow {OA}  - \dfrac{1 }{2}\overrightarrow {OB} \)   

D.\(\overrightarrow {MN}  = \overrightarrow {OA}  + \overrightarrow {OB} \)

Câu 8. Cho  hình bình hành ABCD. Gọi G là trọng tâm tam giác ABC. Tìm mệnh đề sai

A.\(\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = 3\overrightarrow {DG} \)

B.\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GD}  = \overrightarrow {CD} \)

C.\(\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = \overrightarrow {DG} \)          

D.\(\overrightarrow {GA}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow {BD} \)

Câu 9. Cho hình bình hành ABCD và \(AB'C'D'\) có chung đỉnh A. Tìm mệnh đề đúng

A.\(BCC'B'\) là hình bình hành                      

B.\(\overrightarrow {CC'}  = \overrightarrow {BB'}  + \overrightarrow {DD'} \)

C.\(C{\rm{DD}}'C'\) là hình bình hành    

D.\(\overrightarrow {AC}  = \overrightarrow {AC'} \)

Câu 10. Tam giác ABC là tam giác gì nếu thỏa mãn điều kiện \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right|\) ?

A.Vuông                 B. Cân      

C. Đều                   D. Nhọn   

Xem lời giải