Đề kiểm tra 15 phút - Chương 5 - Đại số và Giải tích 11

Bài Tập và lời giải

Đề kiểm tra 15 phút - Đề số 1 - Chương 5 - Đại số và Giải tích 11

Câu 1: Số gia của hàm số \(f(x) = {x^3}\) ứng với \({x_0} = 2\) và \(\Delta x = 1\) bằng bao nhiêu?

A.-19                     B. 7

C. 19                     D. -7         

Câu 2: Tỉ số \(\dfrac{{\Delta y}}{{\Delta x}}\) của hàm số \(f(x) = 2x(x - 1)\) theo x và \(\Delta x\) là

A. \(4x + 2\Delta x + 2\)

B. \(4x + 2{(\Delta x)^2} - 2\)

C. \(4x + 2\Delta x - 2\)

D. \(4x\Delta x + 2{(\Delta x)^2} + 2\Delta x\)

Câu 3: Cho hàm số \(f(x) = {x^2} - x\) đạo hàm của hàm số ứng với số gia \(\Delta x\) của đối số x tại \({x_0}\) là:

A. \(\mathop {\lim }\limits_{\Delta x \to 0} ({(\Delta x)^2} + 2x\Delta x - \Delta x)\)

B. \(\mathop {\lim }\limits_{\Delta x \to 0} (\Delta x + 2x - 1)\)

C. \(\mathop {\lim }\limits_{\Delta x \to 0} (\Delta x + 2x + 1)\)

D. \(\mathop {\lim }\limits_{\Delta x \to 0} ({(\Delta x)^2} + 2x\Delta x + \Delta x)\)

Câu 4: Đạo hàm của\(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {{x^3} - 2{x^2} + x + 1}  - 1}}{{x - 1}},\,\,\,khi\,x \ne 1}\\{0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,\,khi\,x = 1\,\,\,}\end{array}} \right.\) tại điểm \({x_0} = 1\)

A. \(\dfrac{1}{3}\)                 B. \(\dfrac{1}{5}\)

C. \(\dfrac{1}{2}\)                 D. \(\dfrac{1}{4}\)

Câu 5: Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{{x^2},\,\,\,khi\,x \le 2}\\{ - \dfrac{{{x^2}}}{2}\, + bx - 6\,\,,\,khi\,x > 2\,\,\,}\end{array}} \right.\). Để hàm số này có đạo hàm tại x = 2 thì giá trị của b là:

A.b = 3                    B. b = 6

C. b = 1                   D. b = -6

Câu 6: Cho hàm số\(f(x)\) xác định trên \(\mathbb{R}\) bởi \(f(x) = 2{x^2} + 1\). Giá trị \({f'}( - 1)\) bằng?

A.2                           B. 6

C. -4                         D. 3

Câu 7: Đạo hàm của hàm số \(f(x) = {({x^2} + 1)^4}\) tại điểm \(x =  - 1\) là:

A.-32                    B. 30

C. -64                   D. 12

Câu 8: Với \(f(x) = \dfrac{{{x^2} - 2x + 5}}{{x - 1}}\) thì \({f'}( - 1)\) bằng:

A.1                           B. -3

C. -5                         D. 0

Câu 9: Cho hàm số \(f(x)\) xác định trên \(\mathbb{R}\)bởi \(f(x) = \sqrt {{x2}} \). Giá trị \({f'}(0)\) bằng:

A.0                      B. 2

C. 1                     D. Không tồn tại

Câu 10: Cho hàm số \(f(x)\) xác định bởi \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {{x^2} + 1}  - 1}}{x}\,\,(x \ne 0)}\\{0\,\,\,\,\,\,(x = 0)}\end{array}} \right.\). Giá trị \({f'}(0)\) bằng:

A.0                     B. 1

C.\(\dfrac{1}{2}\)                   D. Không tồn tại

Xem lời giải

Đề kiểm tra 15 phút - Đề số 2 - Chương 5 - Đại số và Giải tích 11

Câu 1: Cho hàm số \(y = f(x) = \dfrac{x}{{\sqrt {4 - {x^2}} }}\). Tính \({y'}(0)\) bằng:

A. \({y'}(0) = \dfrac{1}{2}\)              B. \({y'}(0) = \dfrac{1}{3}\)

C. \({y'}(0) = 1\)               D. \({y'}(0) = 2\)

Câu 2: Cho \(f(x) = {x5} + {x3} - 2x - 3\). Tính \(f(x) = {f'}(1) + {f'}( - 1) + 4f(0)\)

A.4                            B. 5

C. 6                           D . 7

Câu 3: Cho hàm số \(f(x) = k\sqrt[3]{x} + \sqrt x \). Với giá trị nào của k thì \({f'}(1) = \dfrac{3}{2}\)?

A.k = 1

B. \(k = \dfrac{9}{2}\)

C.  k = - 3

D. k = 3

Câu 4: Đạo hàm của hàm số \(f(x) = \dfrac{1}{{\sqrt x }} - \dfrac{1}{{{x^2}}}\) tại điểm x= 0 là kết quả nào sau đây ?

A.0   

B. 1  

C. 2

D. Không tồn tại

Câu 5: Đạo hàm cấp một của hàm số \(y = {(1 - {x^3})^5}\) là :

A. \(y' = 5{(1 - {x^3})^4}\)

B. \(y' =  - 15{x^2}{(1 - {x^3})^4}\)

C. \(y' =  - 3{(1 - {x^3})^4}\)

D. \(y' =  - 5{(1 - {x^3})^4}\)

Câu 6: Tính đạo hàm của hàm số \(y = {(x + 2)^3}{(x + 3)^2}\):

\(A. y' = 3{({x^2} + 5x + 6)^3} + 2(x + 3){(x + 2)^3}\)

\(B. y' = 2{({x^2} + 5x + 6)^2} + 3(x + 3){(x + 2)^3}\)

\(C. y' = 3({x^2} + 5x + 6) + 2(x + 3)(x + 2)\)

\(D. y' = 3{({x^2} + 5x + 6)^2} + 2(x + 3){(x + 2)^3}\)

Câu 7: Cho hàm số \(y = \dfrac{{2x + 5}}{{{x^2} + 3x + 3}}\). Đạo hàm \(y'\) của hàm số là :

A. \(\dfrac{{2{x^2} + 10x + 9}}{{{{({x^2} + 3x + 3)}^2}}}\)

B. \(\dfrac{{ - 2{x^2} - 10x - 9}}{{{{({x^2} + 3x + 3)}^2}}}\)

C. \(\dfrac{{{x^2} - 2x - 9}}{{{{({x^2} + 3x + 3)}^2}}}\)

D. \(\dfrac{{ - 2{x^2} - 5x - 9}}{{{{({x^2} + 3x + 3)}^2}}}\)

Câu 8: Cho hàm số \(y = {x^3} - 3{x^2} - 9x - 5\). Phương trình \(y' = 0\) có nghiệm là:

A.\(\left\{ { - 1;2} \right\}\)             B. \(\left\{ { - 1;3} \right\}\)

C. \(\left\{ {0;4} \right\}\)               D. \(\left\{ {1;2} \right\}\)

Câu 9: Cho hàm số \(y = 4x - \sqrt x \). Nghiệm của phương trình \(y' = 0\) là:

A. \(x = \dfrac{1}{8}\)                 B. \(x = \sqrt {\dfrac{1}{8}} \)

C. \(x = \dfrac{1}{{64}}\)                D. \(x =  - \dfrac{1}{{64}}\)

Câu 10: Cho hàm số \(y =  - 4{x3} + 4x\). Để \({y'} \ge 0\) thì x nhận các giá trị thuộc tập nào sau đây ?

A. \(\left[ { - \sqrt 3 ;\sqrt 3 } \right]\)

B. \(\left[ { - \dfrac{1}{{\sqrt 3 }};\dfrac{1}{{\sqrt 3 }}} \right]\)

C. \(\left( { - \infty ; - \sqrt 3 } \right] \cup \left[ {\sqrt 3 ; + \infty } \right)\)

D. \(\left( { - \infty ; - \dfrac{1}{{\sqrt 3 }}} \right] \cup \left[ {\dfrac{1}{{\sqrt 3 }}; + \infty } \right)\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 3 - Chương 5 - Đại số và Giải tích 11

Câu 1: Tính đạo hàm của hàm số sau: \(y = {x^4} - 3{x^2} + 2x - 1\)

A. \({y'} = 4{x^3} - 6x + 3\)

B.\({y'} = 4{x^4} - 6x + 2\)

C.\({y'} = 4{x^3} - 3x + 2\)

D. \({y'} = 4{x^3} - 6x + 2\)

Câu 2: Cho hàm số \(f(x) = 2{x^3} + 1\). Giá trị của \(f'( - 1)\)bằng

A.6                        B. 3

C. -2                      D. -6

Câu 3: Cho hàm số \(y = \cos \left( {\dfrac{{2\pi }}{3} + 2x} \right)\).Khi đó phương trình \(y' = 0\) có nghiệm là

A. \(x =  - \dfrac{\pi }{3} + k2\pi \)

B. \(x = \dfrac{\pi }{3} + \dfrac{{k\pi }}{2}\)

C. \(x =  - \dfrac{\pi }{3} + k\pi \)

D. \(x =  - \dfrac{\pi }{3} + \dfrac{{k\pi }}{2}\)

Câu 4: Cho hàm số \(f(x) = {(3{x^2} - 1)^2}\). Giá trị của \(f'(1)\)bằng

A.4                    B. 8

C. -4                  D. -24

Câu 5: Cho hàm số \(y = \cos 3x.\sin 2x\). Giá trị của \(y'\left( {\dfrac{\pi }{3}} \right)\)bằng

A.-1                   B. 1

C. \( - \dfrac{1}{2}\)               D. \(\dfrac{1}{2}\)

Câu 6: Đạo hàm của \(y = \sqrt {3{x^2} - 2x + 1} \) bằng

A. \(\dfrac{{3x - 1}}{{\sqrt {3{x^2} - 2x + 1} }}\)

B. \(\dfrac{{6x - 2}}{{\sqrt {3{x^2} - 2x + 1} }}\)

C. \(\dfrac{{3{x^2} - 1}}{{\sqrt {3{x^2} - 2x + 1} }}\)

D. \(\dfrac{1}{{2\sqrt {3{x^2} - 2x + 1} }}\)

Câu 7: Một chuyển động thẳng xác định bởi phương trình \(s = {t^3} - 3{t^2} + 5t + 2\), trong đó t tính bằng giây và s tính bằng mét. Gia tốc của chuyển động khi t = 3 là

A. \(24m/{s^2}\)                    B. \(17m/{s^2}\)

C. \(14m/{s^2}\)                     D. \(12m/{s^2}\)

Câu 8: Phương trình tiếp tuyến của đồ thị hàm số \(y = {(x + 1)^2}(x - 2)\) tại điểm có hoành độ x = 2 là

A. \(y =  - 8x + 4\)   

B. \(y = 9x + 18\)

C. \(y =  - 4x + 4\)         

D. \(y = 9x - 18\)

Câu 9: Cho hàm số \(y = 3{x^3} + {x^2} + 1\). Để \(y' \le 0\) thì \(x\) nhận các giá trị thuộc tập nào sau đây

A. \(\left[ { - \dfrac{2}{9};0} \right]\)

B. \(\left[ { - \dfrac{9}{2};0} \right]\)

C. \(\left( { - \infty ; - \dfrac{9}{2}} \right] \cup \left[ {0; + \infty } \right)\)

D. \(\left( { - \infty ; - \dfrac{2}{9}} \right] \cup \left[ {0; + \infty } \right)\)

Câu 10: Cho hàm số \(y = \dfrac{{{x^2} + x}}{{x - 2}}\). Phương trình tiếp tuyến tại A(1; -2) là

A.\(y =  - 4(x - 1) - 2\) 

B. \(y =  - 5(x - 1) + 2\)

C. \(y =  - 5(x - 1) - 2\) 

D. \(y =  - 3(x - 1) - 2\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 4 - Chương 5 - Đại số và Giải tích 11

Câu 1: Cho hàm số  \(y = \sqrt {1 - {x^2}} \) thì \(f'(2)\) là kết quả nào sau đây ?

A. \(f'(2) = \dfrac{2}{{\sqrt 3 }}\)

B. \(f'(2) = \dfrac{{ - 2}}{{\sqrt 3 }}\)

C. \(f'(2) = \dfrac{2}{{\sqrt 7 }}\)

D. Không tồn tại

Câu 2: Đạo hàm của \(y = {({x^5} - 2{x^2})^2}\) là:

A. \(y' = 10{x^9} - 28{x^6} + 16{x^3}\)       

B. \(y' = 10{x^9} - 14{x^6} + 16{x^3}\)

C. \(y' = 10{x^9} + 16{x^3}\)

D. \(y' = 7{x^6} - 6{x^3} + 16x\)

Câu 3: Tính đạo hàm của hàm số \(y = {x^2}(2x + 1)(5x - 3)\):

A. \(y' = 40{x^3} - 5{x^2} - 6x\)

B. \(y' = 40{x^3} - 3{x^2} - 6x\)   

C. \(y' = 40{x^3} + 3{x^2} - 6x\)

D. \(y' = 40{x^3} - 3{x^2} - x\)

Câu 4: Đạo hàm của hàm số \(y = \dfrac{{2 - x}}{{3x + 1}}\) là:

A. \(y' =   \dfrac{{ - 7}}{{3x + 1}}\)

B. \(y' =   \dfrac{{ - 5}}{{{{(3x + 1)}^2}}}\)

C. \(y' =   \dfrac{{ - 7}}{{{{(3x + 1)}^2}}}\)

D. \(y' =   \dfrac{5}{{{{(3x + 1)}^2}}}\)

Câu 5: Cho hàm số \(y =    - 3{x^3} + 25\). Các nghiệm của phương trình \(y' =   0\) là:

A. \(x =  \pm \dfrac{5}{3}\)

B. \(x =  \pm \dfrac{3}{5}\)

C. x = 0

D. \(x =  \pm 5\)

Câu 6: Cho hàm số \(f(x) = {x^3} - 3{x^2} + 1\). Đạo hàm của hàm số \(f(x)\) âm khi và chỉ khi.

A. \(0 < x < 2\)

B. \(x < 1\)

C. \(x < 0\) hoặc \(x > 1\)

D. \(x < 0\) hoặc \(x > 2\)

Câu 7: Hàm số \(y = \tan x - \cot x\) có đạo hàm là:

A. \(y' = \dfrac{1}{{{{\cos }^2}2x}}\)

B. \(y' = \dfrac{4}{{{{\sin }^2}2x}}\)

C. \(y' = \dfrac{4}{{{{\cos }^2}2x}}\)

D. \(y' = \dfrac{1}{{{{\sin }^2}2x}}\)

Câu 8: Gọi (P) là đồ thị của hàm số \(y = 2{x^2} - x + 3\). Phương trình tiếp tuyến với (P) tại điểm mà  (P) cắt trục tung là:

A. \(y =  - x + 3\)

B. \(y =  - x - 3\)

C. \(y = 4x - 1\)

D. \(y = 11x + 3\)

Câu 9: Cho hàm số \(y = \dfrac{{2x - 4}}{{x - 3}}\) có đồ thị là (H). Phương trình tiếp tuyến tại giao điểm của (H) với trục hoành là:

A. \(y = 2x - 4\)

B. \(y = 3x + 1\)

C. \(y =  - 2x + 4\)

D. \(y = 2x\)

Câu 10: Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \dfrac{{2 - 3x}}{{x - 1}}\) tại giao điểm của đồ thị hàm số với trục hoành bằng:

A. 9                           B. \(\dfrac{1}{9}\)

C. -9                         D. \( - \dfrac{1}{9}\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 5 - Chương 5 - Đại số và Giải tích 11

Câu 1: Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{{x^3}}}{3} + 3{x^2} - 2\) có hệ số góc k = -9, có phương trình là:

A. \(y - 16 =  - 9(x + 3)\)

B. \(y =  - 9(x + 3)\)

C. \(y - 16 =  - 9(x - 3)\)

D.\(y + 16 =  - 9(x + 3)\)

Câu 2: Tìm vi phân của hàm số\(y = {(3x + 1)^{10}}\):

A.\(dy = 10{(3x + 1)^9}dx\)

B. \(dy = 30{(3x + 1)^{10}}dx\)     

C. \(dy = 9{(3x + 1)^{10}}dx\)

D. \(dy = 30{(3x + 1)^9}dx\)

Câu 3: Cho hàm số \(y = {x^3} - 3{x^2}\) có đồ thị (C) . Có bao nhiêu tiếp tuyến của (C) song song đường thẳng \(y = 9x + 10\)?

A.1                      B. 3

C.2                      D.4

Câu 4: Viết phương trình tiếp tuyến của đồ thị hàm số : \(y = 2{x^4} - 4{x^2} + 1\) biết tiếp tuyến song song với đường thẳng \(y = 48x - 1\).

A. \(y = 48x - 9\)

B. \(y = 48x - 7\)

C. \(y = 48x - 10\)

D. \(y = 48x - 79\)

Câu 5: Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 6{x^2} + 11x - 1\) tại điểm có tung độ bằng 5.

A. \(y = 2x + 1;y =  - x + 2;y = 2x - 1\)

B. \(y = 2x + 3;y =  - x + 7;y = 2x - 2\)

C. \(y = 2x + 1;y =  - x + 2;y = 2x - 2\)

D. \(y = 2x + 3;y =  - x + 7;y = 2x - 1\)

Câu 6: Cho hàm số \(y = f(x) = {x^2} + 5x + 4\), có đồ thị (C) . Tại các giao điểm của (C) với trục Ox, tiếp tuyến của (C) có phương trình:

A. \(y = 3x + 3\) và \(y =  - 3x - 12\)

B. \(y = 3x - 3\) và \(y =  - 3x + 12\)

C. \(y =  - 3x + 3\) và \(y = 3x - 12\)

D. \(y = 2x + 3\) và \(y =  - 2x - 12\)

Câu 7: Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) tại giao điểm với trục tung bằng:

A.-2                       B. 2

C. 1                        D. -1

Câu 8: Tìm vi phân của hàm số sau: \(y = \sin 2x + {\sin ^3}x\):

A. \(dy = (\cos 2x + 3{\sin ^2}x\cos x)dx\)

B. \(dy = (2\cos 2x + 3{\sin ^2}x\cos x)dx\)

C. \(dy = (2\cos 2x + {\sin ^2}x\cos x)dx\)

D. \(dy = (\cos 2x + {\sin ^2}x\cos x)dx\)

Câu 9: Hàm số \(y = {\mathop{\rm s}\nolimits} {\rm{inx}}\) có đạo hàm là:

A. \(y' = \cos x\)

B. \(y' =  - \cos x\)

C. \(y' =  - \sin x\)

D. \(y' = \dfrac{1}{{\cos x}}\)

Câu 10: Cho hàm số \(f(x) = \dfrac{{{x^2} - 1}}{{{x^2} + 1}}\). Tập nghiệm của phương trình \(f'(x) = 0\) là

A. \(\left\{ 0 \right\}\)             B. \(\mathbb{R}\)

C. \(\mathbb{R}\backslash \left\{ 0 \right\}\)        D. \(\emptyset \)

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”