Câu 1. Cho hàm số y=f(x) có đạo hàm trên K( K là một khoảng, đoạn hoặc nửa khoảng). Khẳng định nào sau đây đúng?
A. Nếu \(f'(x) \ge 0,\,\forall x \in K\) thì hàm số f(x) đồng biến trên K.
B. Nếu \(f'(x) > 0,\,\forall x \in K\) thì hàm số f(x) nghịch biến trên K.
C. Nếu \(f'(x) > 0,\,\forall x \in K\) thì hàm số f(x) đồng biến trên K.
D. Nếu \(f'(x) \le 0,\forall x \in K\) thì hàm số nghịch biến trên K.
Câu 2. Hàm số \(y = - \dfrac{1 }{ 3}{x^3} + x + 1\) đồng biến trên khoảng nào ?
A. \(( - 1; + \infty )\)
B. ( - 1 ; 1)
C. \(( - \infty ;1)\)
D. \(( - \infty ; - 1)\) và \((1; + \infty )\)
Câu 3. Cho hàm số \(y = - {x^3} + 3{x^2} - 3x + 1\), mệnh đề nào sau đây là đúng?
A. Hàm số luôn nghịch biến;
B. Hàm số luôn đồng biến;
C. Hàm số đạt cực đại tại x = 1;
D. Hàm số đạt cực tiểu tại x = 1.
Câu 4. Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2}\) trên đoạn [- 1 ; 1] là:
A. – 2 B. 0
C. – 5 D. – 4 .
Câu 5. Hàm số \(y = \dfrac{{ - 2x + 1}}{{x - 1}}\) đồng biến trên:
A. \(( - \infty ;1)\)
B. \(R\backslash \{ 1\} \)
C. \((0; + \infty )\)
D. R.
Câu 6. Tâm đối xứng của đồ thị hàm số \(y =\dfrac{{3x + 1}}{{x + 1}}\) là
A. (3 ; - 1) B. (- 1; 3 )
C. (3 ; 1) D. (1 ; 3).
Câu 7. Số điểm cực trị của đồ thị hàm số \(y = {x^4} - {x^3}\) là:
A. 1 B. 0
C. 3 D. 2.
Câu 8. Giá trị lớn nhất của hàm số \(y = {x^3} - 6{x^2} + 12x + 5\) trên đoạn [0 ; 3] là:
A. 14 B. 13
C. 5 D. 10
Câu 9. C ó bao nhiêu tiếp tuyến với đồ thị hàm số \(y = \dfrac{{2x + 3}}{{x - 1}}\), biết tiếp tuyến song song vối đường thẳng \(y = - 5x - 3\)
A. 1 B. 0
C. 2 D. 3
Câu 10. Giá trị cực tiểu của hàm số \(y = {x^3} - 3{x^2} - 9x + 2\) là:
A. -20 B. 7
C. – 25 D. 3.
Câu 1. Điểm cực đại của hàm số \(y = {x^4} - 8{x^2} + 1\) là
A. \(x = 2\) B. \(x = - 2\)
C. \(x = \pm 2\) D. \(x = 0.\)
Câu 2. Tìm điểm cực tiểu của đồ thị hàm số \(y = - \dfrac{1}{ 3}{x^3} + x\)
A. \((-1 ; 0)\)
B. \(\left( {1;\dfrac{2 }{3}} \right)\)
C. \(\left( { - 1; - \dfrac{2}{3}} \right)\)
D. \((1 ; 0)\)
Câu 3. Nếu hàm số y=f(x) thỏa mãn \(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = - \infty \) thì đồ thị hàm số y=f(x) có đường tiệm cận đứng là đường có phương trình
A. x = 1 B. y = 1
C. x = - 1 D. y = - 1.
Câu 4. Hàm số nào sau đây mà đồ thị không có đường tiệm cận ?
A. \(y = \dfrac{{ - 2x + 5}}{{x - 3}}\)
B. \(y = 2{x^3} - x + 2\)
C. \(y = \dfrac{{x - 2}}{{x + 3}}\)
D. \(y = \dfrac{{3x - 2}}{{x + 1}}\)
Câu 5. Trong các mệnh đề sau mệnh đề nào sai:
A. Nếu \(f'(x) > 0,\forall x \in K\) thì hàm số f(x) đồng biến trên K.
B. Nếu \(f'(x) \ge 0,\forall x \in K\) và dấu “=” xảy ra tại hữu hạn điểm thì hàm số f(x) đồng biến trên K.
C. Hàm số \(y=f(x)\) là hàm hằng trên K khi \(f'(x) = 0,\forall x \in K\)
D. Nếu \(f'(x) > 0,\forall x \in K\) thì hàm số f(x) nghịch biến trên K.
Câu 6. Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{2x}}{{x - 2}}\) tại điểm có hoành độ bằng 3:
A. \(y = 4x - 18\)
B. \(y = - 4x + 18\)
C. \(y = - 4x + 6\)
D. \(y = - 4x - 18\)
Câu 7. Đồ thị sau đây là của hàm số nào ?
A. \(y = - {x^4} + 2{x^2} - 3\)
B. \(y = {x^4} + 3{x^2} - 3\)
C. \(y = {x^4} - 2{x^2} - 3\)
D. \(y = {x^4} - 2{x^2} + 3\)
Câu 8. Cho hàm số \(y = {x^3} + 3x + 2\). Mệnh đề nào dưới đây là đúng ?
A. Hàm số nghịch biến trên khoảng \(( - \infty ;0)\) và đồng biến trên khoảng \((0; + \infty )\).
B. Hàm số đồng biến trên khoảng \(( - \infty ; + \infty )\).
C. Hàm số đồng biến trên khoảng \(( - \infty ;0)\) và nghịch biến trên khoảng \((0; + \infty )\).
D. Hàm số nghịch biến trên khoảng \(( - \infty ; + \infty )\).
Câu 9. Hàm số \(y = {x^4} - 8{x^3} + 432\) có bao nhiêu điểm cực trị?
A. 0 B. 1
C. 2 D. 3 .
Câu 10. Hàm số \(y = {x^4} - 2{x^2} + 2016\) nghịch biến trên khoảng nào sau đây?
A. (- 1 ; 0) B . \(( - \infty ; - 1)\)
C. (- 1 ;1) D. \(( - \infty ;1)\).
Câu 1. Đồ thị sau đây là của hàm số nào?
A. \(y = - {x^3} + 3{x^2} + 1\)
B. \(y = {x^3} - 3x + 1\)
C. \(y = {x^3} - 3{x^2} + 3x + 1\)
D. \(y = - {x^3} - 3{x^2} - 1\)
Câu 2. Đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số nào sau đây ?
A. \(y = \dfrac{{2x - 2}}{{x + 2}}\)
B. \(y = \dfrac{{{x^2} + 2x + 2}}{{1 + x}}\)
C. \(y = \dfrac{{2{x^2} + 3}}{{2 - x}}\)
D. \(y = \dfrac{{1 + x}}{{1 - 2x}}\)
Câu 3. Hàm số \(y = - {x^3} + 3{x^2} - 1\) đồng biến trên khoảng nào ?
A. \(( - \infty ;1)\)
B. \((0;2)\)
C. \((2; + \infty )\)
D. \(( - \infty ; + \infty )\).
Câu 4. Tìm giá trị lớn nhất của hàm số \(y = \sqrt { - {x^2} + 4x} \).
A. 0 B. 4
C. – 2 D. 2.
Câu 5. Số gioa điểm của đồ thị hàm số \(y = {x^4} + {x^2} - 2\) với trục hoành là
A. 0 B. 3
C. 2 D. 1
Câu 6. Cho hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\) với a > 0 có đồ thị như hình vẽ sau. Mệnh đề nào đúng ?
A. b < 0, c < 0, d < 0.
B. b > 0 , c > 0, d < 0.
C. b < 0, c > 0, d < 0.
D. b > 0, c < 0, d < 0.
Câu 7. Trong những điểm sau điểm nào thuộc đồ thị hàm số \(y = \dfrac{{x + 1}}{{2x - 1}}\) ?
A. (2 ; - 1) B. (1 ; 2)
C. (1; 0) D. (0 ; 1).
Câu 8. Đồ thị sau đây là của hàm số nào?
A. \(y = {x^3} + 3x - 4\)
B. \(y = - {x^3} + 3{x^2} - 4\)
C. \(y = {x^3} - 3x - 4\)
D.. \(y = {x^3} - 3{x^2} - 4\).
Câu 9. Cho hàm số y=f(x) xác định và lien tục trên khoảng \(( - \infty ; + \infty )\) có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng \((1; + \infty )\).
B. Hàm số đồng biến trên khoảng \(( - \infty ; - 2)\)
C. Hàm số nghịch biến trên khoảng \(( - \infty ;1)\).
D. Hàm số đồng biến trên khoảng \(( - 1; + \infty )\).
Câu 10. Tìm số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{{x^2} - 5x + 4}}{{{x^2} - 1}}\)
A. 0 B. 2
C. 1 D. 3
Câu 1. Tính giá trị lớn nhất của hàm số \(f(x) = - {x^4} - 3{x^2} + 2017\) trên R.
A. \(\mathop {\max }\limits_R f(x) = 2017\)
B. \(\mathop {\max }\limits_R f(x) = 2016\)
C. \(\mathop {\max }\limits_R f(x) = 2015\)
D. \(\mathop {\max }\limits_R f(x) = 2014\)
Câu 2. Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
A. Hàm số nghịch biến trên \(( - \infty ;1)\).
B. Hàm số đồng biến trên \(( - \infty ;1)\).
C. Hàm số nghịch biến trên \(\left( { - \infty ;{1 \over 4}} \right)\).
D. Hàm số đồng biến trên \(\left( { - \infty ;{1 \over 4}} \right)\).
Câu 3. Cho hàm số y=f(x) có \(\mathop {\lim }\limits_{x \to + \infty } f(x) = 2\,,\,\,\mathop {\lim }\limits_{x \to - \infty } f(x) = - 2\). Khẳng định nào sau đây đúng ?
A. Đồ thị hàm số đã cho có đúng một tiệm cận ngang.
B. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y = 2 và y = - 2.
C. Đồ thị hàm số đã cho không có tiệm cận ngang.
D. Đồ thị hàm số đã cho ó hai tiệm cận ngang là các đường thẳng x = 2 và x = - 2.
Câu 4. Tìm điều kiện của m để hàm số \(y = \dfrac{1 }{4}{x^4} - 2m{x^2} + 3\) không có cực đại.
A. m > 0 B. m < 0
C. \(m \ge 0\) D. \(m \le 0\).
Câu 5. Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3{x^2} + 1\) tại điểm A(3 ; 1) là:
A. \(y = - 9x - 26\) B. \(y = 9x - 26\)
C. \(y = - 9x - 3\) D. \(y = 9x + 2\)
Câu 6. Đồ thị hàm số \(y = \dfrac{{2x - 1}}{{ - x + 1}}\) có tiệm cận đứng
A. x = 1 B. y = 1
C. x = - 1 D. y = - 2.
Câu 7. Cho hàm số \(y = x + \cos x\) Tìm phát biểu đúng:
A. Hàm số đồng biến trên R.
B. Hàm số nghịch biến trên \((0; + \infty )\).
C. Hàm số nghịch biến trên R.
D. Hàm số đồng biến trên \(( - \infty ;0)\).
Câu 8. Đồ thị sau đây là của hàm số nào ?
A. \(y = \dfrac{{x + 1}}{{x - 1}}\)
B. \(y = \dfrac{{x - 2}}{{1 - x}}\)
C. \(y = \dfrac{{x + 2}}{{x - 1}}\)
D. \(y = \dfrac{{x + 2}}{{1 - x}}\).
Câu 9. Đồ thị hàm số nào có đường tiệm cận ngang?
A. \(y = {x^4} - {x^2} + 3\)
B. \(y = \dfrac{{x - 2}}{{{x} + 2}}\)
C. \(y = {x^3} - 2{x^2} + 3\)
D. \(y = \dfrac{{{x^2} + 1}}{{x - 1}}\)
Câu 10. Tích các tung độ giao điểm của hai đồ thị hàm số \(y = {x^3} - {x^2} - 2x + 3,\,\,\,y = {x^2} - x + 1\)
A. 3 B. 9
C. 10 D. – 2 .
Câu 1. Hàm số \(y = - {x^4} + 8{x^2} + 5\) nghịch biến trên khoảng nào ?
A. \(( - \infty ;0)\)
B. \(( - \infty ; - 2)\) và \((0;2)\)
C. \((0; + \infty )\)
D. \(( - 2;0)\) và \((2; + \infty )\).
Câu 2. Cho hàm số \(y = f'(x)\) có bảng biến thiên như sau:
Khi đó, điểm cực đại của hàm số là
A. x = 0. B. x = 4.
C. x = 2. D. x = 1.
Câu 3. Số đường tiệm cận của đồ thị hàm số \(y = \dfrac{3}{{x - 2}}\) là
A. 0 B. 1
C. 2 D. 3
Câu 4. Hệ số góc tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) tại điểm giao điểm của đồ thị với trục tung bằng:
A. – 2 B. 2
C. 1 D. – 1.
Câu 5. Tìm giá trị của m đề hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực tiểu tại x = 2.
A. m = 0 B. m = 1
C. m = 3 D. m < 0.
Câu 6. Phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) tại điểm có hoành độ bằng 3:
A. \(y = 3x + 13\)
B \(y = 3x - 5\)
C. \(y = - 3x - 5\)
D. \(y = - 3x + 13\).
Câu 7. Cho hàm số \(y = x + \dfrac{4}{{x - 2}}\) , giá trị nhỏ nhất của hàm số trên [- 1 ; 1] là:
A. – 4 B. – 3
C. – 7/3 D. – 2 .
Câu 8. Cho hàm số \(y = {x^3} - 4{x^2} + 5x - 2\). Mệnh đề nào sau đây đúng ?
A. Hàm số nghịch biến trên khoảng \(( - \infty ;1)\).
B. Hàm số đồng biến trên khoảng \(\left( {1;\dfrac{5 }{ 3}} \right)\).
C. Hàm số nghịch biến trên khoảng \(\left( {\dfrac{5 }{ 3}; + \infty } \right)\).
D. Hàm số nghịch biến trên khoảng \(\left( {1;\dfrac{5 }{3}} \right)\).
Câu 9. Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{5}{ {x - 1}}\) là đường thẳng có phương trình ?
A. y = 5 B. x = 0
C. x = 1 D. y = 0
Câu 10. Cho hàm số \(y = {\dfrac{2018} {x - 2}}\) có đồ thị (C). Số đường tiệm cận của (C) là:
A. 0 B. 2
C. 3 D. 1