Đề kiểm tra 15 phút - Chương I - Giải Tích 12

Bài Tập và lời giải

Đề kiểm tra 15 phút - Đề số 1 - Chương 1 - Giải Tích 12

Câu 1. Cho hàm số y=f(x) có đạo hàm trên K( K là một khoảng, đoạn hoặc nửa khoảng). Khẳng định nào sau đây đúng?

A. Nếu \(f'(x) \ge 0,\,\forall x \in K\) thì hàm số f(x) đồng biến trên K.

B. Nếu \(f'(x) > 0,\,\forall x \in K\) thì hàm số f(x) nghịch biến trên K.

C. Nếu \(f'(x) > 0,\,\forall x \in K\) thì hàm số f(x) đồng biến trên K.

D. Nếu \(f'(x) \le 0,\forall x \in K\) thì hàm số nghịch biến trên K.  

Câu 2. Hàm số \(y =  - \dfrac{1 }{ 3}{x^3} + x + 1\) đồng biến trên khoảng nào ?

A. \(( - 1; + \infty )\)   

B. ( - 1 ; 1)                              

C. \(( - \infty ;1)\)                   

D. \(( - \infty ; - 1)\) và \((1; + \infty )\)

Câu 3. Cho hàm số \(y =  - {x^3} + 3{x^2} - 3x + 1\), mệnh đề nào sau đây là đúng?

A. Hàm số  luôn nghịch biến;      

B. Hàm số luôn đồng biến;

C. Hàm số đạt cực đại tại x = 1;      

D. Hàm số đạt cực tiểu tại x = 1.

Câu 4. Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2}\) trên đoạn [- 1 ; 1] là:

A. – 2                         B. 0                    

C. – 5                         D. – 4 .

Câu 5. Hàm số \(y = \dfrac{{ - 2x + 1}}{{x - 1}}\) đồng biến trên:

A. \(( - \infty ;1)\)                  

B. \(R\backslash \{ 1\} \)                        

C. \((0; + \infty )\)                  

D. R.

Câu 6. Tâm đối xứng của đồ thị hàm số \(y =\dfrac{{3x + 1}}{{x + 1}}\) là

A. (3 ; - 1)                   B. (- 1; 3 )    

C. (3 ; 1)                     D. (1 ; 3).

Câu 7. Số điểm cực trị của đồ thị hàm số \(y = {x^4} - {x^3}\) là:

A. 1                            B. 0   

C.  3                           D.  2.

Câu 8. Giá trị lớn nhất của hàm số \(y = {x^3} - 6{x^2} + 12x + 5\) trên đoạn [0 ; 3] là:

A. 14                            B. 13

C. 5                             D. 10

Câu 9. C ó bao nhiêu tiếp tuyến với đồ thị hàm số \(y = \dfrac{{2x + 3}}{{x - 1}}\), biết tiếp tuyến song song vối đường thẳng \(y =  - 5x - 3\)

A. 1                             B. 0   

C. 2                             D. 3

Câu 10. Giá trị cực tiểu của hàm số \(y = {x^3} - 3{x^2} - 9x + 2\) là:

A. -20                        B. 7  

C. – 25                      D. 3.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 2 - Chương 1 - Giải Tích 12

Câu 1. Điểm cực đại của hàm số \(y = {x^4} - 8{x^2} + 1\)  là

A. \(x = 2\)                           B. \(x = - 2\)  

C. \(x =  \pm 2\)                      D. \(x = 0.\)

Câu 2. Tìm điểm cực tiểu của đồ thị hàm số \(y =  - \dfrac{1}{ 3}{x^3} + x\)

A. \((-1 ; 0)\)  

B. \(\left( {1;\dfrac{2 }{3}} \right)\)        

C. \(\left( { - 1; - \dfrac{2}{3}} \right)\)                              

D. \((1 ; 0)\)

Câu 3. Nếu hàm số y=f(x) thỏa mãn \(\mathop {\lim }\limits_{x \to {1^ - }} f(x) =  - \infty \) thì đồ thị hàm số y=f(x) có đường tiệm cận đứng là đường có phương trình

A. x = 1                            B. y = 1       

C. x = - 1                          D. y = - 1.

Câu 4. Hàm số nào sau đây mà đồ thị không có đường tiệm cận ?

A. \(y = \dfrac{{ - 2x + 5}}{{x - 3}}\)           

B. \(y = 2{x^3} - x + 2\)         

C. \(y = \dfrac{{x - 2}}{{x + 3}}\)              

D. \(y = \dfrac{{3x - 2}}{{x + 1}}\)

Câu 5. Trong các mệnh đề sau mệnh đề nào sai:

A. Nếu \(f'(x) > 0,\forall x \in K\) thì hàm số f(x) đồng biến trên K.

B. Nếu \(f'(x) \ge 0,\forall x \in K\) và dấu “=” xảy ra tại hữu hạn điểm thì hàm số f(x) đồng biến trên K.

C. Hàm số \(y=f(x)\) là hàm hằng trên K khi \(f'(x) = 0,\forall x \in K\)

D. Nếu \(f'(x) > 0,\forall x \in K\) thì hàm số f(x) nghịch biến trên K.

Câu 6. Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{2x}}{{x - 2}}\) tại điểm có hoành độ bằng 3:

A. \(y = 4x - 18\)                 

B. \(y =  - 4x + 18\)        

C. \(y =  - 4x + 6\)              

D. \(y =  - 4x - 18\)

Câu 7. Đồ thị sau đây là của hàm số nào ?

 

A. \(y =  - {x^4} + 2{x^2} - 3\)                               

B. \(y = {x^4} + 3{x^2} - 3\)

C. \(y = {x^4} - 2{x^2} - 3\)                                  

D. \(y = {x^4} - 2{x^2} + 3\)

Câu 8. Cho hàm số \(y = {x^3} + 3x + 2\). Mệnh đề nào dưới đây là đúng ?

A. Hàm số nghịch biến trên khoảng \(( - \infty ;0)\) và đồng biến trên khoảng \((0; + \infty )\).

B. Hàm số đồng biến trên khoảng \(( - \infty ; + \infty )\).

C. Hàm số đồng biến trên khoảng \(( - \infty ;0)\) và nghịch biến trên khoảng \((0; + \infty )\).

D. Hàm số nghịch biến trên khoảng \(( - \infty ; + \infty )\).

Câu 9. Hàm số \(y = {x^4} - 8{x^3} + 432\) có bao nhiêu điểm cực trị?

A. 0                              B. 1      

C. 2                              D. 3 .

Câu 10. Hàm số \(y = {x^4} - 2{x^2} + 2016\) nghịch biến trên khoảng nào sau đây?

A. (- 1 ; 0)                          B . \(( - \infty ; - 1)\)  

C. (- 1 ;1)                           D. \(( - \infty ;1)\). 

Xem lời giải

Đề kiểm tra 15 phút - Đề số 3 - Chương I - Giải Tích 12

Câu 1. Đồ thị sau đây là của hàm số nào?

 

A. \(y =  - {x^3} + 3{x^2} + 1\)             

B. \(y = {x^3} - 3x + 1\)

C. \(y = {x^3} - 3{x^2} + 3x + 1\)           

D. \(y =  - {x^3} - 3{x^2} - 1\)

Câu 2. Đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số nào sau đây ?

A. \(y = \dfrac{{2x - 2}}{{x + 2}}\)        

B. \(y = \dfrac{{{x^2} + 2x + 2}}{{1 + x}}\)      

C. \(y = \dfrac{{2{x^2} + 3}}{{2 - x}}\)          

D. \(y = \dfrac{{1 + x}}{{1 - 2x}}\)

Câu 3. Hàm số \(y =  - {x^3} + 3{x^2} - 1\) đồng biến trên khoảng nào ?

A. \(( - \infty ;1)\)           

B. \((0;2)\)                            

C. \((2; + \infty )\)                   

D. \(( - \infty ; + \infty )\).

Câu 4. Tìm giá trị lớn nhất của hàm số \(y = \sqrt { - {x^2} + 4x} \).

A. 0                    B. 4        

C. – 2                 D. 2.

Câu 5. Số gioa điểm của đồ thị hàm số \(y = {x^4} + {x^2} - 2\) với trục hoành là

A. 0                    B. 3     

C. 2                    D. 1

Câu 6. Cho hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\) với a > 0 có đồ thị như hình vẽ sau. Mệnh đề nào đúng ?

 

A. b < 0, c < 0, d < 0.                     

B. b > 0 , c > 0, d < 0.

C. b < 0, c > 0, d < 0.                     

D. b > 0, c < 0, d < 0.

Câu 7. Trong những điểm sau điểm nào thuộc đồ thị hàm số \(y = \dfrac{{x + 1}}{{2x - 1}}\) ?

A. (2 ; - 1)                    B. (1 ; 2)        

C. (1; 0)                        D. (0 ; 1).

Câu 8. Đồ thị sau đây là của hàm số nào?

 

A. \(y = {x^3} + 3x - 4\)           

B. \(y =  - {x^3} + 3{x^2} - 4\)         

C. \(y = {x^3} - 3x - 4\)     

D.. \(y = {x^3} - 3{x^2} - 4\).

Câu 9. Cho hàm số y=f(x) xác định và lien tục trên khoảng \(( - \infty ; + \infty )\) có bảng biến thiên như sau:

 

Mệnh đề nào sau đây đúng?

A. Hàm số nghịch biến trên khoảng \((1; + \infty )\).

B. Hàm số đồng biến trên khoảng \(( - \infty ; - 2)\)

C. Hàm số nghịch biến trên khoảng \(( - \infty ;1)\).

D. Hàm số đồng biến trên khoảng \(( - 1; + \infty )\).

Câu 10. Tìm số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{{x^2} - 5x + 4}}{{{x^2} - 1}}\)

A.  0                             B. 2     

C.  1                             D. 3

 

Xem lời giải

Đề kiểm tra 15 phút - Đề số 4 - Chương I - Giải Tích 12

Câu 1. Tính giá trị lớn nhất của hàm số \(f(x) =  - {x^4} - 3{x^2} + 2017\) trên R.

A. \(\mathop {\max }\limits_R f(x) = 2017\)   

B. \(\mathop {\max }\limits_R f(x) = 2016\)    

 C. \(\mathop {\max }\limits_R f(x) = 2015\)      

D. \(\mathop {\max }\limits_R f(x) = 2014\) 

Câu 2. Cho hàm số y=f(x) có bảng biến thiên như sau:

 

Khẳng định nào sau đây đúng?

A. Hàm số nghịch biến trên \(( - \infty ;1)\).         

B. Hàm số đồng biến trên \(( - \infty ;1)\).

C. Hàm số nghịch biến trên \(\left( { - \infty ;{1 \over 4}} \right)\).     

D. Hàm số đồng biến trên \(\left( { - \infty ;{1 \over 4}} \right)\).

Câu 3. Cho hàm số y=f(x) có \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = 2\,,\,\,\mathop {\lim }\limits_{x \to  - \infty } f(x) =  - 2\). Khẳng định nào sau đây đúng ?

A. Đồ thị hàm số đã cho có đúng một tiệm cận ngang.

B. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y = 2 và y = - 2.

C. Đồ thị hàm số đã cho không có tiệm cận ngang.

D. Đồ thị hàm số đã cho ó hai tiệm cận ngang là các đường thẳng x = 2 và x = - 2.

 Câu 4. Tìm điều kiện của m để hàm số \(y = \dfrac{1 }{4}{x^4} - 2m{x^2} + 3\) không có cực đại.

A. m > 0                       B. m < 0      

C. \(m \ge 0\)                     D. \(m \le 0\).

Câu 5. Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3{x^2} + 1\) tại điểm A(3 ; 1) là:

A. \(y =  - 9x - 26\)         B. \(y = 9x - 26\)   

C. \(y =  - 9x - 3\)           D. \(y = 9x + 2\)

Câu 6. Đồ thị hàm số \(y = \dfrac{{2x - 1}}{{ - x + 1}}\) có tiệm cận đứng

A. x = 1                      B. y = 1    

C. x = - 1                   D. y = - 2.

Câu 7. Cho hàm số \(y = x + \cos x\) Tìm phát biểu đúng:

A. Hàm số đồng biến trên R.          

B. Hàm số nghịch biến trên \((0; + \infty )\).

C. Hàm số nghịch biến trên R.          

D. Hàm số đồng biến trên  \(( - \infty ;0)\).

Câu 8. Đồ thị sau đây là của hàm số nào ?

 

A. \(y = \dfrac{{x + 1}}{{x - 1}}\)                   

B. \(y = \dfrac{{x - 2}}{{1 - x}}\)

C. \(y = \dfrac{{x + 2}}{{x - 1}}\)             

D. \(y = \dfrac{{x + 2}}{{1 - x}}\).

Câu 9. Đồ thị hàm số nào có đường tiệm cận ngang?

A. \(y = {x^4} - {x^2} + 3\)         

B. \(y = \dfrac{{x - 2}}{{{x} + 2}}\)                   

C. \(y = {x^3} - 2{x^2} + 3\)      

D. \(y = \dfrac{{{x^2} + 1}}{{x - 1}}\)

Câu 10. Tích các tung độ giao điểm của hai đồ thị hàm số \(y = {x^3} - {x^2} - 2x + 3,\,\,\,y = {x^2} - x + 1\)

A. 3                              B. 9       

C. 10                            D. – 2 .

 

Xem lời giải

Đề kiểm tra 15 phút - Đề số 5 - Chương I - Giải Tích 12

Câu 1. Hàm số \(y =  - {x^4} + 8{x^2} + 5\) nghịch biến trên khoảng nào ?

A. \(( - \infty ;0)\)           

B. \(( - \infty ; - 2)\) và \((0;2)\)           

C. \((0; + \infty )\)     

D. \(( - 2;0)\) và \((2; + \infty )\).

Câu 2. Cho hàm số \(y = f'(x)\) có bảng biến thiên như sau:

 

Khi đó, điểm cực đại của hàm số là

A.  x = 0.                  B. x = 4.      

C. x = 2.                   D. x = 1.

Câu 3. Số đường tiệm cận của đồ thị hàm số \(y = \dfrac{3}{{x - 2}}\) là

A. 0                           B. 1                

C. 2                           D. 3

Câu 4. Hệ số góc tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) tại điểm giao điểm của đồ thị với trục tung bằng:

A. – 2                  B. 2                            

C. 1                     D. – 1.

Câu 5. Tìm giá trị của m đề hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực tiểu tại x = 2.

A. m = 0                         B. m = 1      

C. m = 3                         D. m < 0.

Câu 6. Phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) tại điểm có hoành độ bằng 3:

A. \(y = 3x + 13\)                

B \(y = 3x - 5\) 

C. \(y =  - 3x - 5\)               

D. \(y =  - 3x + 13\).

Câu 7. Cho hàm số \(y = x + \dfrac{4}{{x - 2}}\) , giá trị nhỏ nhất của hàm số trên [- 1 ; 1] là:

A. – 4                           B. – 3         

C. – 7/3                        D. – 2 .

Câu 8. Cho hàm số \(y = {x^3} - 4{x^2} + 5x - 2\). Mệnh đề nào sau đây đúng ?

A. Hàm số nghịch biến trên khoảng \(( - \infty ;1)\).

B. Hàm số đồng biến trên khoảng \(\left( {1;\dfrac{5 }{ 3}} \right)\).

C. Hàm số nghịch biến trên khoảng \(\left( {\dfrac{5 }{ 3}; + \infty } \right)\).

D. Hàm số nghịch biến trên khoảng \(\left( {1;\dfrac{5 }{3}} \right)\).

Câu 9. Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{5}{ {x - 1}}\) là đường thẳng có phương trình ?

A. y = 5                        B. x = 0   

C. x = 1                        D. y = 0

Câu 10. Cho hàm số \(y = {\dfrac{2018} {x - 2}}\) có đồ thị (C). Số đường tiệm cận của (C) là:

A. 0                              B. 2        

C. 3                              D. 1

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”