Đề kiểm tra 15 phút - Chương II - Giải Tích 12

Bài Tập và lời giải

Đề kiểm tra 15 phút - Đề số 1 - Chương II - Giải Tích 12

Câu 1. Trong các số sau số nào lớn nhất ?

A. \({\log _2}5\)                    B. \({\log _4}15\)     

C. \({\log _8}3\)                    D. \({\log _{{1 \over 2}}}{1 \over 6}\).

Câu 2. Đạo hàm của hàm số \(y = {(2x + 1)^e}\) là:

A. \(y' = 2{(2x + 1)^e}\)       

B. \(y' = 2e{(2x + 1)^{e - 1}}\)      

C. \(y' = e{(2x + 1)^{e - 1}}\)    

D. \(y' = 2{(2x + 1)^{e - 1}}\).

Câu 3. Cho a > 1. Tìm mệnh đề sai trong các mệnh đề sau :

A. \({\log _a}x > 0\) khi x > 1.

B. \({\log _a}x < 0\) khi 0 < x < 1.

C. Đồ thị hàm số \(y = {\log _a}x\) có tiệm cận ngang là trục hoành.

D. Nếu 0 < x1 < x2 thì \({\log _a}{x_1} < {\log _a}{x_2}\).

Câu 4. Điều kiện xác định của phương trình \({\log _x}(2{x^2} - 7x + 5) = 2\) là:

A. \(x \in (0; + \infty )\)                             

B. \(x \in (0;1)\)                    

C. \(x \in \left( {{5 \over 2}; + \infty } \right)\)                            

D. \(x \in (0;1) \cup \left( {{5 \over 2}; + \infty } \right)\).

Câu 5. Tìm mệnh đề đúng trong các mệnh đề sau:

A. Hàm số \(y = {\log _a}x\) với a > 1 nghịch biến trên khoảng \((0; + \infty )\).

B. Hàm số \(y = {a^x}\)với 0 < a < 1 đồng biến trên khoảng \((0; + \infty )\).

C. Hàm số \(y = \log x\) nghịch biến trên khoảng \((0; + \infty )\).

D. Hàm số \(y = {a^x}\)với 0 < a < 1 nghịch biến trên khoảng \(( - \infty ; + \infty )\).

Câu 6. Phương trình \({3^{3x + 1}} = 27\) có nghiệm là:

A. 4                             B. 1          

C. \({2 \over 3}\)                            D. \({4 \over 3}\).

Câu 7. Tập nghiệm cũa bất phương trình \({3^{2x - 5}} < 9\)  là:

A. \(\left( { - \infty ;{7 \over 2}} \right)\)                

B. \(\left( {{7 \over 2}; + \infty } \right)\)                   

C. \(\left( { - \infty ;{5 \over 2}} \right)\)               

D. \(\left( {{5 \over 2}; + \infty } \right)\).

Câu 8. Biểu thức \(\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } \,\,(x > 0)\) được viết dưới dạng lũy thừa số mũ hữu tỷ là;

A. \({x^{{{15} \over {16}}}}\)                        

B. \({x^{{{15} \over {18}}}}\)                             

C. \({x^{{3 \over {16}}}}\)                       

D. \({x^{{7 \over {18}}}}\).

Câu 9. Cho phương trình \(\ln x + \ln (x + 1) = 0\). Chọn khẳng định đúng :

A. Phương trình vô nghiệm.

B. Phương trình có hai nghiệm .

C. Phương trình có nghiệm \( \in (1;2)\).

D. Phương trình có nghiệm \( \in (0;1)\).

Câu 10. Số nghiệm của phương trình \({2^{2{x^2} - 7x + 5}} = 1\) là:

A. 0                            B. 1               

C. 2                            D. 3

Xem lời giải

Đề kiểm tra 15 phút - Đề số 2 - Chương II - Giải Tích 12

Câu 1. Phương trình \({\log _2}^2x - 4{\log _2}x + 3 = 0\) có tập nghiệm là :

A. {6 ; 8}                    B. {1 ; 3}       

C. {6 ; 2}                    D. {8 ; 2}

Câu 2. Biết \({\log _9}5 = a\). Khi đó giá trị của \({\log _3}5\) được tính theo a là :

A. \(\dfrac{1 }{ 2}a\)                         B. 4a    

C. \(\dfrac{1 }{ 4}a\)                         D. 2a

Câu 3. Hàm số \(y = {\left( {9{x^2} - 1} \right)^{ - 3}}\) có tập xác định là :

A. R                                B. \(\left( { - \dfrac{1}{3};\dfrac{1}{3}} \right)\) 

C. \((0; + \infty )\)                   D. \(\mathbb{R}\backslash \left\{ { - \dfrac{1}{3};\dfrac{1}{3}} \right\}\)

Câu 4. Tính đạo hàm của hàm số \(y = \root 3 \of {{x^4} + 1} \) .

A. \(y' = \dfrac{{2{x^3}} }{ {3\root 3 \of {{{\left( {{x^4} + 1} \right)}^2}} }}\)              

B. \(y' = \dfrac{{4{x^3}} }{{\root 3 \of {{{\left( {{x^4} + 1} \right)}^2}} }}\)      

C. \(y' = \dfrac{{3{x^3}} }{ {4\root 3 \of {{{\left( {{x^4} + 1} \right)}^2}} }}\)                 

D. \(y' = \dfrac{{4{x^3}} }{ {3\root 3 \of {{{\left( {{x^4} + 1} \right)}^2}} }}\).

Câu 5. Gọi x1, x2 là hai nghiệm của phương trình \({\log _2}^2x - 3{\log _2}x + 2 = 0\). Giá trị biểu thức \(P = {x_1}^2 + {x_2}^2\) bằng bao nhiêu ?

A. 20                            B. 5    

C. 36                            D. 25

Câu 6. Phương trình \({\log _2}({x^2} - 2x + 3) = 1\) có mấy nghiệm ?

A. 2                              B. 3        

C. 0                              D. 1.

Câu 7.  Cho \(f(x) = \dfrac{{{e^x}}}{{{x^2}}}\). Đạo hàm f’(1) bằng :

A. 6e                            B. 4e     

C. \({e^2}\)                            D. –e.        

Câu 8. Cho a > 0 và \(a \ne 1\). Tìm mệnh đề đúng trong các mệnh đề sau :

A. \({\log _a}x\) có nghĩa với mọi x.

B. \({\log _a}1 = a,\,\,{\log _a}a = 0\).

C. \({\log _a}{x^n} = n{\log _a}x\,\,(x > 0,\,n \ne 0)\).

D. \({\log _a}xy = {\log _a}x.{\log _a}y\).

Câu 9. Cho \({\pi ^\alpha } > {\pi ^\beta }\). Kết luận nào sau đây là đúng ?

A. \(\alpha  > \beta \)                     B. \(\alpha  + \beta  = 0\)   

C.\(\alpha  < \beta \)                      D. \(\alpha .\beta  = 1\)

Câu 10. Rút gọn biểu thức \({b^{{{\left( {\sqrt 3  - 1} \right)}^2}}}:{b^{ - 2\sqrt 3 }}\,\,(b > 0)\), ta được:

A \({b^4}\)                             B. b           

C. \({b^3}\)                            D. \({b^2}\) 

Xem lời giải

Đề kiểm tra 15 phút - Đề số 3 - Chương II - Giải Tích 12

Câu 1. Phương trình \({\log _2}(3x + 2) = 3\) có nghiệm là:

A. 1                           B. 2     

C. 3                           D. 4

Câu 2. Tập xác định của hàm số \(y = {(1 - x)^{\dfrac{1 }{ 3}}}\) là:

A. \(( - \infty ;1]\)                      B. \(\mathbb R\)             

C. \(\mathbb R \backslash \{1\}\)                         D. \(( - \infty ;1)\)

Câu 3. Khẳng định nào sai trong các khẳng định sau :

A. \(\ln x > 0\,\,\, \Leftrightarrow \,\,\,x > 1\).

B. \({\log _2}x < 0\,\, \Leftrightarrow \,\,0 < x < 1\).

C. \({\log _{{1 \over 3}}}a > {\log _{{1 \over 3}}}b\,\, \Leftrightarrow \,\,a > b > 0\).

D. \({\log _{{1 \over 2}}}a = {\log _{{1 \over 2}}}b\,\,\, \Leftrightarrow \,\,a = b > 0\).

Câu 4. Phương trình \({\log _3}({x^2} - 6) - {\log _3}(x - 2) = 1\) có nghiệm là

A. S= {0 ; 3}                 B. S=\(\emptyset \)     

C. S={3}                       D. S={1; 3}.

Câu 5. Cho 3 số dương a,b,c khác 1. Chọn khẳng định sai trong các khẳng sau:

A. \({\log _a}bc = {\log _a}b + {\log _a}c\).

B. \({\log _a}c = {\log _a}b.{\log _b}c\).

C. \({a^{{{\log }_a}b}} = a\).

D. \({\log _a}b = \dfrac{1 }{ {{{\log }_b}a}}\).

Câu 6. Hàm số \(f(x) = {x^2}\ln x\) đạt cực trị tại điểm :

A. \(x = \sqrt e \)                B. \(x = \dfrac{1 }{ {\sqrt e }}\)  

C. \(x = e\)                    D. \(x =\dfrac {1 }{ e}\).

Câu 7. Cho \(f(x) = {x^\pi }.{\pi ^x}\). Đạo hàm f’(1) bằng:

A. \(\pi (\pi  + \ln \pi )\)                   B. \({\pi ^2}\ln \pi \)      

C. \(\pi \ln \pi \)                             D. \(\pi (1 + \ln 2)\).

Câu 8. Giá trị của \({\log _{\dfrac{1}{a}}}\root 3 \of {{a^7}} \,\,(a > 0,\,a \ne 1)\) bằng :

A. \(\dfrac{5 }{ 3}\)                   B. \(\dfrac{2 }{3}\)                               

C. 4                    D. \( - \dfrac{7}{ 3}\).

Câu 9. Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng nó xác định ?

A. \(y = \root 3 \of x \)                        B. \(y = {x^4}\)   

C. \(y = {x^{ - 4}}\)                       D. \(y = {x^{ - {3 \over 4}}}\)

Câu 10. Phương trình \({4^{3x - 2}} = 16\) có nghiệm  là:

A. 3                          C. 5               

C. \(\dfrac{3 }{4}\)                        D. \(\dfrac{4 }{ 3}\)


Xem lời giải

Đề kiểm tra 15 phút - Đề số 4 - Chương II - Giải Tích 12

Câu 1. Hàm số nào sau đây đồng biến trên tập xác định của nó:

A. \(y = {\left( {\dfrac{2}{3}} \right)^x}\)               

B. \(y = {\left( {0.5} \right)^x}\)              

C. \(y ={\left( {\dfrac{\pi }{e}} \right)^x}\)            

D. \(y = {\left( {\dfrac{{\sqrt 2 }}{2}} \right)^x}\).

Câu 2. Trong các mệnh đề sau đây mệnh đề nào sai ?

A. Hàm số  \(y = {e^{2x + 1}}\) có đạo hàm là \(y' = 2{e^{2x + 1}}\).

B. Đồ thị hàm số \(y = {3^x}\) nhận trục Oy là tiệm cận đứng.

C. hàm số \(y = {\left( {{1 \over 2}} \right)^x}\) nghịch biến trên R.

D. Hàm số \(y = {2^x}\) đồng biến trên R.

Câu 3. Tập xác định của hàm số \(y = \ln (x - 1)\) là

A. \([e; + \infty )\)                     B. \((0; + \infty )\)  

C. \((1; + \infty )\)                    D. \([1; + \infty )\)

Câu 4. Trong các hàm số sau : \(f(x) = \ln \dfrac{1 }{{\sin x}}\,;\,\,g(x) = \ln \dfrac{{1 + \sin x}}{{\cos x}}\,;\)\(\,\,h(x) = \ln \dfrac{1 }{ {\cos x}}\). Hàm số nào có đạo hàm là \(\dfrac{1 }{ {\cos x}}\) ?

A. f(x)                          B. g(x)           

C. h(x)                         D. g(x) và h(x).

Câu 5. Tập nghiệm của bpt \({2^x} + {2^{1 - x}} - 3 < 0\) là

A. \((0; + \infty )\)                B. (0 ; 2)    

C. (1; 2)                      D. (0 ; 1)

Câu 6. Tập xác định của \(y = \dfrac{1 }{{{5^x} - 5}}\) là

A. \(( - \infty ;1) \cup (2; + \infty )\)        

B. \((1; + \infty )\)     

C. R\{1}                     

D. R\{1 ; 3}.

Câu 7. Tính đạo hàm của hàm số \(y = \ln (\cos 3x)\).

A. \(y' =  - 3\tan 3x\)             

B. \(y' = \cot 3x\)                  

C. \(y' =  - {\mathop{\rm t}\nolimits} {\rm{an3}}x\)          

D. \(y' =  - 3\cot 3x\).

Câu 8. Cho a là một số dương , biểu thức \({a^{{2 \over 3}}}\sqrt a \) viết dưới dạng lũy thừa với số mũ hữu tỷ là :

A. \({a^{{6 \over 5}}}\)                              

B. \({a^{{{11} \over 6}}}\)                              

C . \({a^{{5 \over 6}}}\)                        

D. \({a^{{7 \over 6}}}\).

Câu 9. Rút gọn biểu thức \({a^{\sqrt 2 }}{\left( {\dfrac{1 }{ a}} \right)^{\sqrt 2  - 1}}\,\,(a > 0)\), ta được:

A. a                              B. 2a     

C. 3a                            D. 4a.

Câu 10. Cho a > 0, \(a \ne 1\). Tìm mệnh đề đúng trong các mệnh đề sau:

A. Tập giá trị của hàm số \(y = {\log _a}x\) là khoảng \((0; + \infty )\).

B. Tập giá trị của hàm số \(y = {a^x}\) là tập R.

C. Tập xác định của hàm số \(y = {\log _a}x\) là khoảng \((0; + \infty )\).

D. Tập xác định của hàm số \(y = {a^x}\) là khoảng \((0; + \infty )\).

Xem lời giải

Đề kiểm tra 15 phút - Đề số 5 - Chương II - Giải Tích 12

Câu 1. Tập  nghiệm của phương trình \({1 \over 2}{\log _2}{(x + 2)^2} - 1 = 0\) là:

A. {0 ;- 4 }                 B. {0}                         

C. {-1 ; 0}                  D. {-4 }.

Câu 2. Cho phương trình \({3^{1 + x}} + {3^{1 - x}} = 10\). Chọn đáp án đúng :

A. Có hai nghiệm cùng âm.            

B. Có hai nghiệm trái dấu.

C. Vô nghiệm                                 

D. Có hai nghiệm dương.

Câu 3. Phương trình \({3^{x + 1}} = 1\) có nghiệm là

A. \(x =  - 1\)                     B. \(x =  - \dfrac{1}{ 2}\)x       

C. \(x = \dfrac{1 }{2}\)                       D. \(x =1.\)

Câu 4. \({\log _{{1 \over a}}}\root 3 \of {{a^5}} \,\,\,(a > 0,a \ne 1)\) bằng:

A. \( - \dfrac{7 }{ 3}\)                      B. \(\dfrac{2 }{ 3}\)           

C. 4                          D. \(\dfrac{5 }{ 3}\)

Câu 5. Tập xác định của hàm số \(y = \sqrt {{9^x} - {3^x}} \)  là

A. \([0; + \infty )\)                     B. \((5; + \infty )\)      

C. R\{5}                           D. R\{0 ; 5}

Câu 6. Nghiệm của phương trình \({\left( {\dfrac{3 }{5}} \right)^x} = {\left( {\dfrac{5 }{ 3}} \right)^3}\) là:

A. -1                          B . 1            

C. 3                           D. -3 .

Câu 7. Tập nghiệm của bất phương trình \({\log _{{1 \over 2}}}(2x - 1) > {\log _{{1 \over 2}}}(x + 1)\) là:

A. \((2; + \infty )\)                   

B. \(\left( {\dfrac{1 }{ 2};2} \right)\)                            

C. \(( - \infty ;2)\)                

D. \(\left( { - \dfrac{1 }{2};2} \right)\).

Câu 8. Giá trị của \({\log _{0,5}}0,125\) bằng:

A. 5                           B. 3      

C. 4                           D. 2

Câu 9. Cho a > 0 và \(a \ne 1\), x và y là hai số dương.Tìm mệnh đề đúng :

A. \({\log _a}(x + y) = {\log _a}x + {\log _a}y\).

B. \({\log _a}{1 \over x} = \dfrac{1 }{ {{{\log }_a}x}}\).

C. \({\log _a}{x \over y} = \dfrac{{{{\log }_a}x} }{{{{\log }_a}y}}\).

D. \({\log _b}x = {\log _b}a.{\log _a}x\).

Câu 10. Hàm số \(y = {2^{\ln x + {x^2}}}\) có đạo hàm y’ là:

A. \(\left( {\dfrac{1}{x} + 2x} \right){2^{\ln x + {x^2}}}\)           

B. \(\left( {\dfrac{1 }{ x} + 2x} \right){2^{\ln x + {x^2}}}\ln 2\)         

C. \(\dfrac{{{2^{\ln x + {x^2}}}}}{{\ln 2}}\)                        

D. \(\left( {\dfrac{1}{x} + 2x} \right)\dfrac{{{2^{\ln x + {x^2}}}}}{{\ln 2}}\)

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”