a) MA, MB là hai tiếp tuyến của (O) nên MA \( \bot \) OA và MB \( \bot \) OB.
Xét tứgiác AOBM có:
\(\widehat {AOB} = 360^\circ - (\widehat {MAO} + \widehat {MBO} + \widehat {AMB}) \)\(\;= 360^\circ - (90^\circ + 90^\circ + 50^\circ ) = 130^\circ \).
\(sd \overparen {AB}=sd\overparen{AOB}=130^o\)
b) Ta có: \(sd\overparen {ADB} = 360^o − \overparen {AB} = 360^o − 130^o\)\(\;= 230^o\)
Mặt khác OD // BM mà BM \( \bot \) OB \(\Rightarrow\) OD \( \bot \) OB
hay \(sd\overparen{AD} = sd\overparen{ADB }– sd\overparen{BD} \)\(\,= 230^o− 90^o=140^o\)