Đề kiểm tra 15 phút - Đề số 1 - Chương 5 - Đại số và Giải tích 11

Câu 1: Số gia của hàm số \(f(x) = {x^3}\) ứng với \({x_0} = 2\) và \(\Delta x = 1\) bằng bao nhiêu?

A.-19                     B. 7

C. 19                     D. -7         

Câu 2: Tỉ số \(\dfrac{{\Delta y}}{{\Delta x}}\) của hàm số \(f(x) = 2x(x - 1)\) theo x và \(\Delta x\) là

A. \(4x + 2\Delta x + 2\)

B. \(4x + 2{(\Delta x)^2} - 2\)

C. \(4x + 2\Delta x - 2\)

D. \(4x\Delta x + 2{(\Delta x)^2} + 2\Delta x\)

Câu 3: Cho hàm số \(f(x) = {x^2} - x\) đạo hàm của hàm số ứng với số gia \(\Delta x\) của đối số x tại \({x_0}\) là:

A. \(\mathop {\lim }\limits_{\Delta x \to 0} ({(\Delta x)^2} + 2x\Delta x - \Delta x)\)

B. \(\mathop {\lim }\limits_{\Delta x \to 0} (\Delta x + 2x - 1)\)

C. \(\mathop {\lim }\limits_{\Delta x \to 0} (\Delta x + 2x + 1)\)

D. \(\mathop {\lim }\limits_{\Delta x \to 0} ({(\Delta x)^2} + 2x\Delta x + \Delta x)\)

Câu 4: Đạo hàm của\(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {{x^3} - 2{x^2} + x + 1}  - 1}}{{x - 1}},\,\,\,khi\,x \ne 1}\\{0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,\,khi\,x = 1\,\,\,}\end{array}} \right.\) tại điểm \({x_0} = 1\)

A. \(\dfrac{1}{3}\)                 B. \(\dfrac{1}{5}\)

C. \(\dfrac{1}{2}\)                 D. \(\dfrac{1}{4}\)

Câu 5: Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{{x^2},\,\,\,khi\,x \le 2}\\{ - \dfrac{{{x^2}}}{2}\, + bx - 6\,\,,\,khi\,x > 2\,\,\,}\end{array}} \right.\). Để hàm số này có đạo hàm tại x = 2 thì giá trị của b là:

A.b = 3                    B. b = 6

C. b = 1                   D. b = -6

Câu 6: Cho hàm số\(f(x)\) xác định trên \(\mathbb{R}\) bởi \(f(x) = 2{x^2} + 1\). Giá trị \({f'}( - 1)\) bằng?

A.2                           B. 6

C. -4                         D. 3

Câu 7: Đạo hàm của hàm số \(f(x) = {({x^2} + 1)^4}\) tại điểm \(x =  - 1\) là:

A.-32                    B. 30

C. -64                   D. 12

Câu 8: Với \(f(x) = \dfrac{{{x^2} - 2x + 5}}{{x - 1}}\) thì \({f'}( - 1)\) bằng:

A.1                           B. -3

C. -5                         D. 0

Câu 9: Cho hàm số \(f(x)\) xác định trên \(\mathbb{R}\)bởi \(f(x) = \sqrt {{x2}} \). Giá trị \({f'}(0)\) bằng:

A.0                      B. 2

C. 1                     D. Không tồn tại

Câu 10: Cho hàm số \(f(x)\) xác định bởi \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {{x^2} + 1}  - 1}}{x}\,\,(x \ne 0)}\\{0\,\,\,\,\,\,(x = 0)}\end{array}} \right.\). Giá trị \({f'}(0)\) bằng:

A.0                     B. 1

C.\(\dfrac{1}{2}\)                   D. Không tồn tại

Lời giải

Câu

1

2

3

4

5

6

7

8

9

10

Đáp án

C

C

B

C

B

C

C

D

A

C

Câu 1: Đáp án C

Số gia của hàm số \(f(x) = {x^3}\) ứng với \({x_0} = 2\) và \(\Delta x = 1\)là:

\(\Delta y = f({x_0} + \Delta x) - f({x_0}) = {(2 + 1)^3} - {2^3} = 19\)

Câu 2: Đáp án C

\(\begin{array}{l}\Delta y = 2(x + \Delta x)(x + \Delta x - 1) - 2x(x - 1) = 2{x^2} + 2x\Delta x - 2x + 2x\Delta x + 2{(\Delta x)^2} - 2\Delta x - 2{x^2} + 2x\\ = 4x\Delta x + 2{(\Delta x)^2} - 2\Delta x\\\dfrac{{\Delta y}}{{\Delta x}} = \dfrac{{4x\Delta x + 2{{(\Delta x)}^2} - 2\Delta x}}{{\Delta x}} = 4x + 2\Delta x - 2\end{array}\)

Câu 3: Đáp án B

\(\mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{{{(x + \Delta x)}^2} - (x + \Delta x) - {x^2} + x}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{{x^2} + 2x\Delta x + {{\left( {\Delta x} \right)}^2} - x - \Delta x - {x^2} + x}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {2x + \Delta x - 1} \right)\)

Câu 4: Đáp án C

\(\begin{array}{l}f'(1) = \mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {{x^3} - 2{x^2} + x + 1}  - 1}}{{{{(x - 1)}^2}}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 2{x^2} + x}}{{{{(x - 1)}^2}\left( {\sqrt {{x^3} - 2{x^2} + x + 1}  + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{x{{(x - 1)}^2}}}{{{{(x - 1)}^2}\left( {\sqrt {{x^3} - 2{x^2} + x + 1}  + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \dfrac{x}{{\left( {\sqrt {{x^3} - 2{x^2} + x + 1}  + 1} \right)}} = \dfrac{1}{2}\end{array}\)

Câu 5: Đáp án B

Để hàm số có đạo hàm tại x = 2 thì hàm số liên tục tại x=2

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - \dfrac{{{x^2}}}{2}\, + bx - 6} \right) = 2b - 8\\\mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} {x^2} = 4 = f(2)\end{array}\)

Suy ra \(2b - 8 = 4 \Leftrightarrow 2b = 12 \Leftrightarrow b = 6\)

Câu 6: Đáp án C

\(\begin{array}{l}f'(x) = {\left( {2{x^2} + 1} \right)^\prime } = 4x\\f'( - 1) = 4.( - 1) =  - 4\end{array}\)

Câu 7: Đáp án C

\(\begin{array}{l}f'(x) = {\left[ {{{({x^2} + 1)}^4}} \right]^\prime } = 8x{({x^2} + 1)^3}\\f'( - 1) = 8.( - 1).{\left[ {{{( - 1)}^2} + 1} \right]^3} =  - 64\end{array}\)

Câu 8: Đáp án D

\(\begin{array}{l}f'(x) = {\left( {\dfrac{{{x^2} - 2x + 5}}{{x - 1}}} \right)^\prime } = \dfrac{{(2x - 2)(x - 1) - ({x^2} - 2x + 5)}}{{{{(x - 1)}^2}}} = \dfrac{{{x^2} - 2x - 3}}{{{{(x - 1)}^2}}}\\f'( - 1) = \dfrac{{{{( - 1)}^2} - 2.( - 1) - 3}}{{{{\left( {( - 1) - 1} \right)}^2}}} = 0\end{array}\)

Câu 9: Đáp án A

\(\begin{array}{l}f'(x) = {\left( {\sqrt {{x^2}} } \right)^\prime } = \dfrac{x}{{\sqrt x }} = \sqrt x \\f'(0) = \sqrt 0  = 0\end{array}\)

Câu 10: Đáp án C

\(f'(0) = \mathop {\lim }\limits_{x \to 0} \dfrac{{f(x) - f(0)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sqrt {{x^2} + 1}  - 1}}{x}}}{x} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {{x^2} + 1}  - 1}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\sqrt {{x^2} + 1}  + 1}} = \dfrac{1}{2}\)